Skip to main content

Methods to Detect Nitric Oxide in Plants: Are DAFs Really Measuring NO?

  • Protocol
  • First Online:
Plant Nitric Oxide

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1424))

Abstract

Nitric oxide, a gaseous radical molecule, appears involved in many reactions in all living organisms. Fluorescent dyes like DAF-2 and related compounds are still widely used to monitor NO production inside or outside cells, although doubts about their specificity have recently been raised. We present evidence that DAF dyes do not only react with nitric oxide but also with peroxidase enzyme and hydrogen peroxide. Both are secreted in the case of elicitation of tobacco suspension cells with cryptogein, with a fluorescence increase mimicking NO release from cells. However, HPLC separation shows that fluorescence outside cells does not at all originate from DAF-2T, the product of DAF-2 and NO, but from other yet unidentified compounds. Inside cells, other DAF molecules are formed but only a minor part is DAF-2T. The chemical nature of the novel DAF derivatives still needs to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garcia Mata C, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196–1204

    Article  CAS  PubMed  Google Scholar 

  2. Belgini MV, Lamattina L (2001) Nitric oxide: a nontraditional regulator of plant growth. Trends Plant Sci 6:508–509

    Article  Google Scholar 

  3. Wink DA, Derbyshire JF, Nims RW, Saavedra JE, Ford PC (1993) Reactions of the bioregulatory agent nitric oxide in oxygenated aqueous media: determination of the kinetics for oxidation and nitrosation by intermediates generated in the NO/O2 reaction. Chem Res Toxicol 6:23–27

    Article  CAS  PubMed  Google Scholar 

  4. Gupta KJ, Stoimenova M, Kaiser WM (2005) In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot 56:2601–2609

    Article  CAS  PubMed  Google Scholar 

  5. Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468:89–92

    Article  CAS  PubMed  Google Scholar 

  6. Stöhr C, Strube F, Marx G, Ullrich WR, Rockel P (2000) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212:835–841

    Google Scholar 

  7. Fröhlich A, Durner J (2011) The hunt for plant nitric oxide synthase (NOS): is one really needed? Plant Sci 181:401–404

    Article  PubMed  Google Scholar 

  8. Rümer S, Kapuganti JG, Kaiser WM (2009) Plant cells oxidize hydroxylamines to NO. J Exp Bot 60:2065–2072

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hall CN, Garthwaite J (2009) What is the real physiological NO concentration in vivo? Nitric Oxide 21:92–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Malinski T, Taha Z, Grunfeld S, Patton S, Kapturczak M, Tomboulian P (1993) Diffusion of nitric oxide in the aorta wall monitored in situ by porphyrinic microsensors. Biochem Biophys Res Commun 193:1076–1082

    Article  CAS  PubMed  Google Scholar 

  11. Mur LAJ, Mandon J, Cristescu SM, Harren FJM, Prats E (2011) Methods of nitric oxide detection in plants: a commentary. Plant Sci 181:509–519

    Article  CAS  PubMed  Google Scholar 

  12. Schwendemann J, Sehringer B, Noethling C, Zahradnik HP, Schaefer WR (2008) Nitric oxide detection by DAF (diaminofluorescein) fluorescence in human myometrial tissue. Gynecol Endocrinol 24:306–331

    Article  CAS  PubMed  Google Scholar 

  13. Sladek SM, Magness RR, Conrad KP (1997) Nitric oxide and pregnancy. Am J Physiol 272:R441–R463

    CAS  PubMed  Google Scholar 

  14. Gabaldón C, Roos LVG, Pedreño MA, Barceló RA (2005) Nitric oxide production by the differentiating xylem of Zinnia elegans. New Phytol 165:121–130

    Article  PubMed  Google Scholar 

  15. Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot 55:205–212

    Article  CAS  PubMed  Google Scholar 

  16. Prado AM, Porterfield DM, Feijo JA (2004) Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. Development 11:2707–2714

    Article  Google Scholar 

  17. Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905

    Article  CAS  PubMed  Google Scholar 

  18. Kojima H, Sakurai K, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T (1998) Development of a fluorescent indicator for nitric oxide based on the fluorescein chromophore. Chem Pharm Bull (Tokyo) 46:373–375

    Article  CAS  Google Scholar 

  19. Broillet MC, Randin O, Chatton YC (2001) Photoactivation and calcium sensitivity of the fluorescent NO indicator 4,5-diaminofluorescein (DAF-2): implications for cellular NO imaging. FEBS Lett 491:227–232

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, Kim W-S, Hatcher N, Potgieter K, Moroz LL, Gillette R, Sweedler JV (2002) Interfering with nitric oxide measurements – 4,5-Diaminofluorescein reacts with dehydroascorbic acid and ascorbic acid. J Biol Chem 277:48472–48478

    Article  CAS  PubMed  Google Scholar 

  21. Gan N, Hondou T, Miyata H (2013) Spontaneous increases in the fluorescence of 4,5-diaminofluorescein and its analogs: their impact on the fluorometry of nitric oxide production in endothelial cells. Biol Pharm Bull (TOKYO) 35:1454–1459

    Article  Google Scholar 

  22. Jourd’heuil A (2002) Increased nitric oxide-dependent nitrosylation of 4,5-diaminofluoresceins by oxidants: implications for the measurement of intracellular nitric oxide. Free Radic Biol Med 33:676–684

    Article  PubMed  Google Scholar 

  23. Planchet E, Sonoda M, Zeier J, Kaiser WM (2006) Nitric oxide (NO) as an intermediate in the cryptogein induced hypersensitive response – a critical re-evaluation. Plant Cell Environ 29:59–69

    Article  CAS  PubMed  Google Scholar 

  24. Ricci P, Bonnet P, Huet JC, Sallantin M, Beauvais-Cante F, Bruneteau M, Billard V, Michel G, Pernollet JC (1989) Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. Eur J Biochem 183:555–563

    Article  CAS  PubMed  Google Scholar 

  25. Minibayeva F, Kolesnikov O, Chasov A, Beckett RP, Lüthje A, Vylegzhanina N, Buck F, Böttger M (2009) Wound-induced apoplastic peroxidase activities: their roles in the production and detoxification of reactive oxygen species. Plant Cell Environ 32:497–508

    Article  CAS  PubMed  Google Scholar 

  26. Veitch NC (2004) Horseradish peroxidase: a modern review of a classic enzyme. Phytochemistry 65:249–259

    Article  CAS  PubMed  Google Scholar 

  27. Rümer S, Krischke M, Fekete A, Müller MJ, Kaiser WM (2012) DAF-fluorescence without NO: elicitor treated tobacco cells produce fluorescing DAF-derivatives not related to DAF-2 triazol. Nitric Oxide 27:123–135

    Article  PubMed  Google Scholar 

  28. Akaike T, Maeda H (1996) Quantitation of nitric oxide using 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO). Methods Enzymol 268:211–222

    Article  CAS  PubMed  Google Scholar 

  29. Lum HK, Butt YKC, Sc L (2002) Hydrogen peroxide induces a rapid production of nitric oxide in mung bean (Phaseolus aureus). Nitric Oxide 6:205–213

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner M. Kaiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ruemer, S., Krischke, M., Fekete, A., Lesch, M., Mueller, M.J., Kaiser, W.M. (2016). Methods to Detect Nitric Oxide in Plants: Are DAFs Really Measuring NO?. In: Gupta, K. (eds) Plant Nitric Oxide. Methods in Molecular Biology, vol 1424. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3600-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3600-7_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3598-7

  • Online ISBN: 978-1-4939-3600-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics