Skip to main content

Identification of Associated Proteins by Immunoprecipitation and Mass Spectrometry Analysis

  • Protocol
  • First Online:
Chemotaxis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1407))

Abstract

Protein-protein interactions play central roles in intercellular and intracellular signal transduction. Impairment of protein-protein interactions causes many diseases such as cancer, cardiomyopathies, diabetes, microbial infections, and genetic and neurodegenerative disorders. Immunoprecipitation is a technique in which a target protein of interest bound by an antibody is used to pull down the protein complex out of cell lysates, which can be identified by mass spectrometry. Here, we describe the protocol to immunoprecipitate and identify the components of the protein complexes of ElmoE in Dictyostelium discoideum cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berggård T, Linse S, James P (2007) Methods for the detection and analysis of protein-protein interactions. Proteomics 7:2833–2842

    Article  PubMed  Google Scholar 

  2. Coffill CR, Muller PA, Oh HK et al (2012) Mutant p53 interactome identifies nardilysin as a p53R273H-specific binding partner that promotes invasion. EMBO Rep 13:638–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ohh M, Park CW, Ivan M et al (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2:423–427

    Article  CAS  PubMed  Google Scholar 

  4. Kuzmanov U, Emili A (2013) Protein-protein interaction networks: probing disease mechanisms using model systems. Genome Med 5:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246

    Article  CAS  PubMed  Google Scholar 

  6. Deane CM, Salwiński Ł, Xenarios I, Eisenberg D (2002) Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol Cell Proteomics 1:349–356

    Article  CAS  PubMed  Google Scholar 

  7. Jin T, Xu X, Hereld D (2008) Chemotaxis, chemokine receptors and human disease. Cytokine 44:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Van Haastert PJ, Devreotes PN (2004) Chemotaxis: signalling the way forward. Nat Rev Mol Cell Biol 5:626–634

    Article  PubMed  Google Scholar 

  9. Kimmel AR, Parent CA (2003) The signal to move: D. discoideum go orienteering. Science 300:1525–1527

    Article  CAS  PubMed  Google Scholar 

  10. Parent CA, Devreotes PN (1999) A cell’s sense of direction. Science 284:765–770

    Article  CAS  PubMed  Google Scholar 

  11. Yan J, Mihaylov V, Xu X et al (2012) A Gβγ effector, ElmoE, transduces GPCR signaling to the actin network during chemotaxis. Dev Cell 22:92–103

    Article  CAS  PubMed  Google Scholar 

  12. Cao X, Yan J, Shu S et al (2014) Arrestins function in cAR1 GPCR-mediated signaling and cAR1 internalization in the development of Dictyostelium discoideum. Mol Biol Cell 25:3210–3221

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li H, Yang L, Fu H et al (2013) Association between Gαi2 and ELMO1/Dock180 connects chemokine signalling with Rac activation and metastasis. Nat Commun 4:1706

    Article  PubMed  PubMed Central  Google Scholar 

  14. Brenner M, Thoms SD (1984) Caffeine blocks activation of cyclic AMP synthesis in Dictyostelium discoideum. Dev Biol 101:136–146

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by grants of National Basic Research Program of China (2014CB541804), Shanghai Pujiang Program (14PJ1407700), and Health and Family Planning Commission Foundation of Shanghai (201440300) to J.Y. and by National Nature Science Foundation of China (81201977) to X.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianshe Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cao, X., Yan, J. (2016). Identification of Associated Proteins by Immunoprecipitation and Mass Spectrometry Analysis. In: Jin, T., Hereld, D. (eds) Chemotaxis. Methods in Molecular Biology, vol 1407. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3480-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3480-5_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3478-2

  • Online ISBN: 978-1-4939-3480-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics