Skip to main content

Intracellular Voltage-Sensitive Dyes for Studying Dendritic Excitability and Synaptic Integration

  • Protocol
  • First Online:
Advanced Patch-Clamp Analysis for Neuroscientists

Part of the book series: Neuromethods ((NM,volume 113))

  • 1650 Accesses

Abstract

Intracellular voltage-sensitive dyes are used to monitor membrane potential changes from neuronal compartments not readily accessible to glass electrodes, such as basal dendritic segments more than 140 μm away from the cell body. Optical imaging is uniquely suitable to reveal voltage transients occurring simultaneously in two or more dendritic branches, or in two or more locations along the same dendritic branch (simultaneous multi-site recordings). Voltage-sensitive dye recordings can be combined with bath application of drugs that block membrane conductances as well as with focal application of neurotransmitters. The results of dendritic voltage-sensitive dye measurements are naturally incorporated into computational models of neurons with complex dendritic trees. The number of model constraints is notably heightened by a multi-site approach. An interaction between multi-site voltage-sensitive dye recording (wet experiment) and multicompartmental modeling (dry experiment) constitutes one of the most insightful combinations in quantitative neurobiology. This chapter discloses disadvantages associated with voltage-sensitive dyes. It brings useful information for deciding whether voltage-sensitive dye imaging is an appropriate method for your experimental question, and how to determine if a student is ready to work with intracellular voltage-sensitive dyes. Our chapter describes the most important, previously unpublished, practical issues of loading neurons with voltage-sensitive dyes and obtaining fast optical signals (action potentials) from thin dendritic branches using equipment at half price of a standard confocal microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367(6458):69–72

    Article  CAS  PubMed  Google Scholar 

  2. Korngreen A, Sakmann B (2000) Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients. J Physiol 3:621–639

    Article  Google Scholar 

  3. Miyakawa H, Ross WN, Jaffe D et al (1992) Synaptically activated increases in Ca2+ concentration in hippocampal CA1 pyramidal cells are primarily due to voltage-gated Ca2+ channels. Neuron 9(6):1163–1173

    Article  CAS  PubMed  Google Scholar 

  4. Schiller J, Helmchen F, Sakmann B (1995) Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurones. J Physiol 487(Pt 3):583–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Antic S, Zecevic D (1995) Optical signals from neurons with internally applied voltage-sensitive dyes. J Neurosci 15(2):1392–1405

    CAS  PubMed  Google Scholar 

  6. Antic S, Major G, Zecevic D (1999) Fast optical recordings of membrane potential changes from dendrites of pyramidal neurons. J Neurophysiol 82(3):1615–1621

    CAS  PubMed  Google Scholar 

  7. Nevian T, Larkum ME, Polsky A et al (2007) Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat Neurosci 10(2):206–214

    Article  CAS  PubMed  Google Scholar 

  8. Antic SD (2003) Action potentials in basal and oblique dendrites of rat neocortical pyramidal neurons. J Physiol 550(1):35–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Acker CD, Antic SD (2009) Quantitative assessment of the distributions of membrane conductances involved in action potential backpropagation along basal dendrites. J Neurophysiol 101(3):1524–1541

    Article  PubMed  Google Scholar 

  10. Milojkovic BA, Radojicic MS, Antic SD (2005) A strict correlation between dendritic and somatic plateau depolarizations in the rat prefrontal cortex pyramidal neurons. J Neurosci 25(15):3940–3951

    Article  CAS  PubMed  Google Scholar 

  11. Milojkovic BA, Radojicic MS, Goldman-Rakic PS et al (2004) Burst generation in rat pyramidal neurones by regenerative potentials elicited in a restricted part of the basilar dendritic tree. J Physiol 558(Pt 1):193–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Milojkovic BA, Zhou WL, Antic SD (2007) Voltage and calcium transients in basal dendrites of the rat prefrontal cortex. J Physiol 585(2):447–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Djurisic M, Antic S, Chen WR et al (2004) Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones. J Neurosci 24(30):6703–6714

    Article  CAS  PubMed  Google Scholar 

  14. Canepari M, Willadt S, Zecevic D et al (2010) Imaging inhibitory synaptic potentials using voltage sensitive dyes. Biophys J 98(9):2032–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Willadt S, Nenniger M, Vogt KE (2013) Hippocampal feedforward inhibition focuses excitatory synaptic signals into distinct dendritic compartments. PLoS One 8(11):e80984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Canepari M, Popovic M, Vogt K et al (2010) Imaging submillisecond membrane potential changes from individual regions of single axons, dendrites and spines. In: Canepari M, Zecevic D (eds) Membrane potential imaging in the nervous system: methods and applications. Springer Science + Business Media, LLC., New York, NY

    Google Scholar 

  17. Yan P, Acker CD, Zhou WL et al (2012) Palette of fluorinated voltage-sensitive hemicyanine dyes. Proc Natl Acad Sci U S A 109(50):20443–20448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rowan MJ, Tranquil E, Christie JM (2014) Distinct Kv channel subtypes contribute to differences in spike signaling properties in the axon initial segment and presynaptic boutons of cerebellar interneurons. J Neurosci 34(19):6611–6623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cohen LB, Salzberg BM, Grinvald A (1978) Optical methods for monitoring neuron activity. Annu Rev Neurosci 1:171–182

    Article  CAS  PubMed  Google Scholar 

  20. Akemann W, Mutoh H, Perron A et al (2010) Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nat Methods 7(8):643–649

    Article  CAS  PubMed  Google Scholar 

  21. Baker BJ, Jin L, Han Z et al (2012) Genetically encoded fluorescent voltage sensors using the voltage-sensing domain of Nematostella and Danio phosphatases exhibit fast kinetics. J Neurosci Methods 208(2):190–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou WL, Yan P, Wuskell JP et al (2008) Dynamics of action potential backpropagation in basal dendrites of prefrontal cortical pyramidal neurons. Eur J Neurosci 27(4):1–14

    Article  Google Scholar 

  23. Aseyev N, Roshchin M, Ierusalimsky VN et al (2012) Biolistic delivery of voltage-sensitive dyes for fast recording of membrane potential changes in individual neurons in rat brain slices. J Neurosci Methods 212(1):17–27

    Article  PubMed  Google Scholar 

  24. Wu JY, Lam YW, Falk CX et al (1998) Voltage-sensitive dyes for monitoring multineuronal activity in the intact central nervous system. Histochem J 30(3):169–187

    Article  CAS  PubMed  Google Scholar 

  25. Loew LM, Scully S, Simpson L et al (1979) Evidence for a charge-shift electrochromic mechanism in a probe of membrane potential. Nature 281(5731):497–499

    Article  CAS  PubMed  Google Scholar 

  26. Fink AE, Bender KJ, Trussell LO et al (2012) Two-photon compatibility and single-voxel, single-trial detection of subthreshold neuronal activity by a two-component optical voltage sensor. PLoS One 7(8):e41434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miller EW, Lin JY, Frady EP et al (2012) Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires. Proc Natl Acad Sci U S A 109(6):2114–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Popovic MA, Gao X, Carnevale NT et al (2014) Cortical dendritic spine heads are not electrically isolated by the spine neck from membrane potential signals in parent dendrites. Cereb Cortex 24(2):385–395

    Article  PubMed  Google Scholar 

  29. Acker CD, Yan P, Loew LM (2011) Single-voxel recording of voltage transients in dendritic spines. Biophys J 101(2):L11–L13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kampa BM, Stuart GJ (2006) Calcium spikes in basal dendrites of layer 5 pyramidal neurons during action potential bursts. J Neurosci 26(28):7424–7432

    Article  CAS  PubMed  Google Scholar 

  31. Holthoff KP, Zecevic DP, Konnerth A (2010) Rapid time-course of action potentials in spines and remote dendrites of mouse visual cortex neurons. J Physiol 588:1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Acker CD, Loew LM (2013) Characterization of voltage-sensitive dyes in living cells using two-photon excitation. Methods Mol Biol 995:147–160

    Article  CAS  PubMed  Google Scholar 

  33. Zhou WL, Antic SD (2012) Rapid dopaminergic and GABAergic modulation of calcium and voltage transients in dendrites of prefrontal cortex pyramidal neurons. J Physiol 590(Pt 16):3891–3911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Milojkovic BA, Wuskell JP, Loew LM et al (2005) Initiation of sodium spikelets in basal dendrites of neocortical pyramidal neurons. J Membr Biol 208(2):155–169

    Article  CAS  PubMed  Google Scholar 

  35. Keren N, Peled N, Korngreen A (2005) Constraining compartmental models using multiple voltage recordings and genetic algorithms. J Neurophysiol 94(6):3730–3742

    Article  PubMed  Google Scholar 

  36. Meyer E, Muller CO, Fromherz P (1997) Cable properties of dendrites in hippocampal neurons of the rat mapped by a voltage-sensitive dye. Eur J Neurosci 9(4):778–785

    Article  CAS  PubMed  Google Scholar 

  37. Prinz AA, Fromherz P (2003) Effect of neuritic cables on conductance estimates for remote electrical synapses. J Neurophysiol 89(4):2215–2224

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Leslie Loew for comments. Supported by institutional Health Center Research Advisory Council (HCRAC) grant and NIH U01 grant to SDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srdjan D. Antic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Acker, C.D., Singh, M.B., Antic, S.D. (2016). Intracellular Voltage-Sensitive Dyes for Studying Dendritic Excitability and Synaptic Integration. In: Korngreen, A. (eds) Advanced Patch-Clamp Analysis for Neuroscientists. Neuromethods, vol 113. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3411-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3411-9_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3409-6

  • Online ISBN: 978-1-4939-3411-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics