Skip to main content

Oral Rabies Vaccine Design for Expression in Plants

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1404))

Abstract

Vaccination is the sensitization process of the immune system against any pathogen. Generally, recombinant subunit vaccines are considered safer than attenuated vaccines. As whole pathogenic organisms are used in the immunization process, the attenuated vaccines are considered more risky than subunit vaccines. Rabies is the oldest known zoonosis which spreads through a neurotropic Lyssavirus primarily mediated through infected canine bites. Rabies causes worldwide loss of more than 60,000 human lives every year. Animal vaccination is equally important to check the transmission of rabies into humans. Rabies oral vaccination can be a good alternative where multiple booster and priming regimens are required while the painful vaccination process can continue for long durations. Introduction of oral vaccines was made to ease the discomfort associated with the mode of introduction of conventional vaccines into the body. Although the rabies oral vaccine can substantially reduce the cost of vaccination in the developing countries, mass immunization programs need larger quantities of vaccines which should be delivered at nominal cost. Expression of recombinant antigen proteins in E. coli is often not viable because of lack of post-translational modifications and folding requirements. Though yeast and insect cell line expression systems have post-translational processing and modifications, significantly different immunological response against their post-translational modification pattern limits their deployment as an expression system. As an alternative, plants are emerging as a promising system to express and deliver wide range of functionally active biopharmaceutical product at lower cost for mass immunization programs. As generation of vaccine antigenic proteins in plant systems are cheaper, the strategy will benefit developing countries where this disease causes thousands of deaths every year. In this chapter, we will discuss about our efforts toward development of oral rabies vaccine and the methodological steps involved during this procedure in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mason H, Haq T, Clements J, Arntzen C (1998) Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT): potatoes expressing a synthetic LT-B gene. Vaccine 16:1336–1343

    Article  CAS  PubMed  Google Scholar 

  2. Tacket CO, Mason HS, Losonsky G, Estes MK, Levine MM, Arntzen CJ (2000) Human immune responses to a novel Norwalk virus vaccine delivered in transgenic potatoes. J Infect Dis 182:302–305

    Article  CAS  PubMed  Google Scholar 

  3. Daniell H, Streatfield SJ, Wycoft K (2001) Medical molecular farming production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6:219–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Webster DE, Thomas MC, Strugnell RA, Dry IB, Wesselingh SL (2002) Appetising solutions: an edible vaccine for measles. Med J Aust 176:434–437

    PubMed  Google Scholar 

  5. Meslin FX, Stohr K (1997) Prospects of immunization against rabies in developing countries. In: Dodet B, Meslin FX (eds) Rabies control in Asia. Elsevier, Paris, pp 15–18

    Google Scholar 

  6. Pasteur L (1885) Méthode pour prévenir la rage aprés morsure. Compt Rendus Acad Sci (Paris) 17:765–774

    Google Scholar 

  7. Perrin P, Lafon M, Sureau P (1990) Rabies vaccines from Pasteur’s time up to experimental subunit vaccines today. Adv Biotechnol Process 14:325–345

    CAS  Google Scholar 

  8. Plotkin S (1993) Vaccination in the 21st century. J Infect Dis 168:29–37

    Article  CAS  PubMed  Google Scholar 

  9. Cox JH, Dietzschold B, Schneider LG (1977) Rabies virus glycoprotein II: biological and serological characterization. Infect Immun 16:754–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Curtiss R, Cardineau GA (1990) Oral immunization by transgenic plants. World Patent Application. WO 90/02484

    Google Scholar 

  11. Mason HS, Lam DMK, Arntzen CJ (1992) Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci U S A 89:11745–11749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tiwari S, Mishra DK, Roy S, Singh A, Singh PK, Tuli R (2009) High level expression of a functionally active cholera toxin B: rabies glycoprotein fusion protein in tobacco seeds. Plant Cell Rep 28:1827–1836

    Article  CAS  PubMed  Google Scholar 

  13. McGarvey PB, Hammond J, Dienelt MM, Hooper DC, Fu ZF, Dietzschold B (1995) Expression of the rabies virus glycoprotein in transgenic tomatoes. Biotechnology 13:1484–1487

    CAS  PubMed  Google Scholar 

  14. Ashraf S, Singh PK, Yadav DK, Shahnawaz M, Mishra S, Sawant SV, Tuli R (2005) High level expression of surface glycoprotein in tobacco and its immunoprotective activity in mice. J Biotechnol 119:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. De Aizpurua HJ, Russell-Jones GJ (1988) Oral vaccination: identification of classes of proteins that provoke an immune response upon oral feeding. J Exp Med 167:440–451

    Article  PubMed  Google Scholar 

  16. McKenzie SJ, Halsey JF (1984) Cholera toxin B subunit as a carrier protein to stimulate a mucosal immune response. J Immunol 133:1818–1824

    CAS  PubMed  Google Scholar 

  17. Holmgren J, Lonnroth I, Mansson J-E, Svennerholm L (1975) Interaction of cholera toxin and membrane GM1 ganglioside of small intestine. Proc Natl Acad Sci U S A 72:2520–2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nashar TO, Webb HM, Eaglestone S, Williams NA, Hirst TR (1996) Potent immunogenicity of the B subunits of Escherichia coli heat-labile enterotoxin: receptor binding is essential and induces differential modulation of lymphocyte subsets. Proc Natl Acad Sci U S A 93:226–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roy S, Tyagi A, Tiwari S, Singh A, Singh PK, Sawant SV, Tuli R (2010) Rabies glycoprotein fused with B subunit of cholera toxin is expressed at high level in tobacco plants and folds into biologically active pentameric protein. Protein Expr Purif 70:184–190

    Article  CAS  PubMed  Google Scholar 

  20. Tiwari S, Verma PC, Singh PK, Tuli R (2009) Plants as bioreactors for the production of vaccine antigens. Biotechnol Adv 27:449–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu J, Langridge WHR (2001) A plant-based multicomponent vaccine protects mice from enteric diseases. Nat Biotechnol 19:548–552

    Article  CAS  PubMed  Google Scholar 

  22. Medina-Bolivar F, Wright R, Funk V, Sentz D, Barroso L, Wilkins TD, Petri W, Cramer CL (2003) A non-toxic lectin for antigen delivery of plant-based mucosal. Vaccines 21:997–1005

    Article  CAS  Google Scholar 

  23. Endo Y, Tsurugi K (1988) The RNA N-glycosidase activity of ricin A-chain. J Biol Chem 263:8735–8739

    Article  CAS  PubMed  Google Scholar 

  24. Lambert JM, Goldmacher VS, Collision AR, Nadler LM, Blattler WA (1991) An immunotoxin prepared with blocked ricin: a natural plant toxin adapted for therapeutic use. Cancer Res 51:6236–6242

    CAS  PubMed  Google Scholar 

  25. Falnes P, Sandvig K (2000) Penetration of protein toxins into cells. Curr Opin Cell Biol 12:407–413

    Article  CAS  PubMed  Google Scholar 

  26. Chazaud B, Muriel MP, Wantyghem J, Aubery M, Decastel M (1995) Ricin toxicity and intracellular routing in tumoral HT-29 cells. Exp Cell Res 221:214–220

    Article  CAS  PubMed  Google Scholar 

  27. Tagge EP, Chandler J, Harris B, Czako M, Marton L, Willingham MC, Burbage C, Afrin L, Frankel AE (1996) Preproricin expressed in Nicotiana tabacum cells in vitro is fully processed and biologically active. Protein Expr Purif 8:109–118

    Article  CAS  PubMed  Google Scholar 

  28. Tonevitsky A, Toptygin A, Agapov I, Pfueller U, Frankel A (1994) Renatured ricin toxin B chain made in Escherichia coli is soluble, stable and biologically active. Biochem Mol Biol Int 32:1139–1146

    CAS  PubMed  Google Scholar 

  29. Wales R, Richardson P, Roberts L, Woodland H, Lord J (1991) Mutational analysis of the galactose binding activity of recombinant ricin B chain. J Biol Chem 266:19172–19179

    Article  CAS  PubMed  Google Scholar 

  30. Choi NW, Estes MK, Langridge WH (2006) Mucosal immunization with a ricin toxin B subunit-rotavirus NSP4 fusion protein stimulates a Th1 lymphocyte response. J Biotechnol 121:272–283

    Article  CAS  PubMed  Google Scholar 

  31. Singh A, Verma PC, Srivastava S, Chouksey A, Roy S, Singh PK, Saxena G, Tuli R (2015) Expression of Rabies glycoprotein and Ricin toxin B chain (RGP-RTB) fusion protein in tomato hairy roots: a step for Oral Vaccination for rabies. Mol Biotechnol 57(4):359–370

    Article  CAS  PubMed  Google Scholar 

  32. Jefferson RA, Kavanagh TA, Bewan MW (1987) β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CaMV35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302

    Article  CAS  PubMed  Google Scholar 

  34. Joshi CP (1987) An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res 15:6643–6653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sawant SV, Singh PK, Gupta SK, Madnala R, Tuli R (1999) Conserved nucleotide sequences in highly expressed genes in plants. J Genetics 78:123–131

    Article  CAS  Google Scholar 

  36. Singh PK, Sarangi BK, Tuli R (1996) A facile method for the construction of synthetic genes. J Biosci 21:735–741

    Article  CAS  Google Scholar 

  37. Mishra S, Yadav DK, Tuli R (2006) Ubiquitin fusion enhances cholera toxin B subunit expression in transgenic plants and the plant-expressed protein binds GM1 receptors more efficiently. J Biotechnol 127:95–108

    Article  CAS  PubMed  Google Scholar 

  38. Shevchuk NA, Bryksin AV, Nusinovich YA, Cabello FC, Sutherland M, Ladisch S (2004) Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously. Nucleic Acids Res 32:e19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Young L, Dong Q (2004) Two-step total gene synthesis method. Nucleic Acids Res 32:e59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Horsch RB, Fry JE, Hoffmann NL, Eicholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  41. Harlow E, Lane D (1988) Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  42. Singh A, Yadav D, Rai KM, Srivastava M, Verma PC, Singh PK, Tuli R (2012) Enhanced expression of rabies virus surface G-protein in Escherichia coli using SUMO fusion. Protein J 31:68–74

    Article  CAS  PubMed  Google Scholar 

  43. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  44. Areas AP, Oliveira ML, Miyaji EN, Leite LC, Aires KA, Dias WO, Ho PL (2004) Expression and characterization of cholera toxin B-pneumococcal surface adhesin A fusion protein in Escherichia coli: ability of CTB-PsaA to induce humoral immune response in mice. Biochem Biophys Res Commun 321(1): 192–6

    Article  PubMed  CAS  Google Scholar 

  45. Sijmons PC, Dekker BMM, Schrammeijer B, Verwoerd TC, van den Elzen PJM, Hoekema A (1990) Production of correctly processed human serum albumin in transgenic plants. Biotechnology 8:217–221

    CAS  PubMed  Google Scholar 

  46. Denecke J, Carlson L, Vidal S, Holund A, Ek B, Zeijl M, Sinjorgo K, Palva T (1995) The tobacco homolog of mammalian calreticulin is present in protein complexes in vivo. Plant Cell 7:391–406

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Arakawa T, Yu J, Chong DK, Hough J, Engen PC, Langridge WH (1998) A plant-based cholera toxin B subunit-insulin fusion protein protects against the development of auto- immune diabetes. Nat Biotechnol 16:934–938

    Article  CAS  PubMed  Google Scholar 

  48. Schouten A, Roosien J, van Engelen FA, de Jong GAM, Borst-Vrenssen AWM, Zilverentant JF (1996) The C-terminal KDEL sequence increases the expression level of a single-chains antibody designed to be targeted to both cytosol and the secretory pathway in transgenic tobacco. Plant Mol Biol 30:781–793

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen C. Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Singh, A., Saxena, G., Verma, P.C. (2016). Oral Rabies Vaccine Design for Expression in Plants. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 1404. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-3389-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3389-1_36

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-3388-4

  • Online ISBN: 978-1-4939-3389-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics