Advertisement

Vaccine Design pp 569-582 | Cite as

High-Density Peptide Arrays for Malaria Vaccine Development

  • Felix F. LoefflerEmail author
  • Johannes Pfeil
  • Kirsten HeissEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1403)

Abstract

The development of an efficacious and practicable vaccine conferring sterile immunity towards a Plasmodium infection represents a not yet achieved goal. A crucial factor for the impact of a given anti-plasmodial subunit vaccine is the identification of the most potent parasitic components required to induce protection from both infection and disease. Here, we present a method based on a novel high-density peptide array technology that allows for a flexible readout of malaria antibodies. Peptide arrays applied as a screening method can be used to identify novel immunogenic antibody epitopes under a large number of potential antigens/peptides. Ultimately, discovered antigen candidates and/or epitope sequences can be translated into vaccine prototype design. The technology can be further utilized to unravel antibody-mediated immune responses (e.g., involved in the establishment of semi-immunity) and moreover to confirm vaccine potency during the process of clinical development by verifying the induced antibody responses following vaccination.

Key words

Immunogenic malarial antigens Antibody readout Peptide binding Malarial subunit vaccine Antibody epitope mapping Antigen screening 

Notes

Acknowledgements

We thank Ann-Kristin Mueller for critical discussions and helpful comments on the manuscript. This work was supported by the University Heidelberg Frontier Innovation Fund of the Excellence Cluster (0077.3.5.2.86) to K.H., the Carl-Zeiss-Foundation, the Gips-Schuele-Foundation, and the Karlsruhe House of Young Scientists to F.L. J.P. is the recipient of an HRCMM (Heidelberg Research Center for Molecular Medicine) Career Development Fellowship.

References

  1. 1.
    WHO (2013) World malaria report: 2013Google Scholar
  2. 2.
    Nussenzweig RS, Vanderberg J, Most H, Orton C (1967) Protective immunity produced by the injection of x-irradiated sporozoites of plasmodium berghei. Nature 216:160–162CrossRefPubMedGoogle Scholar
  3. 3.
    Hoffman SL, Goh LM, Luke TC et al (2002) Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J Infect Dis 185:1155–1164CrossRefPubMedGoogle Scholar
  4. 4.
    Mueller AK, Labaied M, Kappe SH, Matuschewski K (2005) Genetically modified Plasmodium parasites as a protective experimental malaria vaccine. Nature 433:164–167CrossRefPubMedGoogle Scholar
  5. 5.
    VanBuskirk KM, O’Neill MT, De La Vega P et al (2009) Preerythrocytic, live-attenuated Plasmodium falciparum vaccine candidates by design. Proc Natl Acad Sci U S A 106:13004–13009CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Belnoue E, Costa FT, Frankenberg T et al (2004) Protective T cell immunity against malaria liver stage after vaccination with live sporozoites under chloroquine treatment. J Immunol 172:2487–2495CrossRefPubMedGoogle Scholar
  7. 7.
    Roestenberg M, McCall M, Hopman J et al (2009) Protection against a malaria challenge by sporozoite inoculation. N Engl J Med 361:468–477CrossRefPubMedGoogle Scholar
  8. 8.
    Seder RA, Chang LJ, Enama ME et al (2013) Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science 341:1359–1365CrossRefPubMedGoogle Scholar
  9. 9.
    Agnandji ST, Lell B, Soulanoudjingar SS et al (2011) First results of phase 3 trial of RTS, S/AS01 malaria vaccine in African children. N Engl J Med 365:1863–1875CrossRefPubMedGoogle Scholar
  10. 10.
    Agnandji ST, Lell B, Fernandes JF et al (2012) A phase 3 trial of RTS, S/AS01 malaria vaccine in African infants. N Engl J Med 367:2284–2295CrossRefPubMedGoogle Scholar
  11. 11.
    RTS, S Clinical Trials Partnership (2014) Efficacy and safety of the RTS, S/AS01 malaria vaccine during 18 months after vaccination: a phase 3 randomized, controlled trial in children and young infants at 11 African sites. PLoS Med 11(7), e1001685CrossRefGoogle Scholar
  12. 12.
    Hafalla JC, Silvie O, Matuschewski K (2011) Cell biology and immunology of malaria. Immunol Rev 240:297–316CrossRefPubMedGoogle Scholar
  13. 13.
    Vaughan AM, Kappe SH (2012) Malaria vaccine development: persistent challenges. Curr Opin Immunol 24:324–331CrossRefPubMedGoogle Scholar
  14. 14.
    Dups JN, Pepper M, Cockburn IA (2014) Antibody and B cell responses to Plasmodium sporozoites. Front Microbiol 5:625CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Beeson JG, Osier FH, Engwerda CR (2008) Recent insights into humoral and cellular immune responses against malaria. Trends Parasitol 24:578–584CrossRefPubMedGoogle Scholar
  16. 16.
    Doolan DL, Mu Y, Unal B et al (2008) Profiling humoral immune responses to P. falciparum infection with protein microarrays. Proteomics 8:4680–4694CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Crompton PD, Kayala MA, Traore B et al (2010) A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray. Proc Natl Acad Sci U S A 107:6958–6963CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Trieu A, Kayala MA, Burk C et al (2011) Sterile protective immunity to malaria is associated with a panel of novel P. falciparum antigens. Mol Cell Proteomics 10(9):M111.007948CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Felgner PL, Roestenberg M, Liang L et al (2013) Pre-erythrocytic antibody profiles induced by controlled human malaria infections in healthy volunteers under chloroquine prophylaxis. Sci Rep 3:3549CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Baum E, Badu K, Molina DM et al (2013) Protein microarray analysis of antibody responses to Plasmodium falciparum in western Kenyan highland sites with differing transmission levels. PLoS One 8(12), e82246CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Katz C, Levy-Beladev L, Rotem-Bamberger S et al (2011) Studying protein-protein interactions using peptide arrays. Chem Soc Rev 40:2131–2145CrossRefPubMedGoogle Scholar
  22. 22.
    Stephenson KE, Neubauer GH, Reimer U et al (2014) Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development. J Immunol Methods 416:105–123CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dodoo D, Hollingdale MR, Anum D et al (2011) Measuring naturally acquired immune responses to candidate malaria vaccine antigens in Ghanaian adults. Malar J 10:168CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Richards JS, Arumugam TU, Reiling L et al (2013) Identification and prioritization of merozoite antigens as targets of protective human immunity to Plasmodium falciparum malaria for vaccine and biomarker development. J Immunol 191:795–809CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Osier FH, Mackinnon MJ, Crosnier C et al (2014) New antigens for a multicomponent blood-stage malaria vaccine. Sci Transl Med 6(247):247ra102CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Langhorne J, Ndungu FM, Sponaas AM, Marsh K (2008) Immunity to malaria: more questions than answers. Nat Immunol 9:725–732CrossRefPubMedGoogle Scholar
  27. 27.
    Nahrendorf W, Scholzen A, Bijker EM et al (2014) Memory B-cell and antibody responses induced by Plasmodium falciparum sporozoite immunization. J Infect Dis 210:1981–1990CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    PEPperPRINT GmbH, Germany. http://www.pepperprint.com/
  29. 29.
    JPT Peptide Technologies, Germany. http://www.jpt.com/
  30. 30.
    INTAVIS Bioanalytical Instruments AG, Germany. http://www.intavis.com/
  31. 31.
    Stadler V, Felgenhauer T, Beyer M et al (2008) Combinatorial synthesis of peptide arrays with a laser printer. Angew Chem Int Ed Engl 47:7132–7135CrossRefPubMedGoogle Scholar
  32. 32.
    PEPSCAN, Netherlands. http://www.pepscan.com/
  33. 33.
    Maerkle F, Loeffler FF, Schillo S et al (2014) High-density peptide arrays with combinatorial laser fusing. Adv Mater 26:3730–3734CrossRefPubMedGoogle Scholar
  34. 34.
    Buus S, Rockberg J, Forsstrom B et al (2012) High-resolution mapping of linear antibody epitopes using ultrahigh-density peptide microarrays. Mol Cell Proteomics 11:1790–1800CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Teeter MM (1984) Water structure of a hydrophobic protein at atomic resolution: pentagon rings of water molecules in crystals of crambin. Proc Natl Acad Sci U S A 81:6014–6018CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723CrossRefPubMedGoogle Scholar
  37. 37.
    Gardner MJ, Hall N, Fung E et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511CrossRefPubMedGoogle Scholar
  38. 38.
    Florens L, Washburn MP, Raine JD et al (2002) A proteomic view of the Plasmodium falciparum life cycle. Nature 419:520–526CrossRefPubMedGoogle Scholar
  39. 39.
    Wang Q, Brown S, Roos DS et al (2004) Transcriptome of axenic liver stages of Plasmodium yoelii. Mol Biochem Parasitol 137:161–168CrossRefPubMedGoogle Scholar
  40. 40.
    Kaiser K, Matuschewski K, Camargo N, Ross J, Kappe SH (2004) Differential transcriptome profiling identifies Plasmodium genes encoding pre-erythrocytic stage-specific proteins. Mol Microbiol 51:1221–1232CrossRefPubMedGoogle Scholar
  41. 41.
    Gruner AC, Hez-Deroubaix S, Snounou G et al (2005) Insights into the P. y. yoelii hepatic stage transcriptome reveal complex transcriptional patterns. Mol Biochem Parasitol 142:184–192CrossRefPubMedGoogle Scholar
  42. 42.
    Sacci JB Jr, Ribeiro JM, Huang F et al (2005) Transcriptional analysis of in vivo Plasmodium yoelii liver stage gene expression. Mol Biochem Parasitol 142:177–183CrossRefPubMedGoogle Scholar
  43. 43.
    Daily JP, Le Roch KG, Sarr O et al (2005) In vivo transcriptome of Plasmodium falciparum reveals overexpression of transcripts that encode surface proteins. J Infect Dis 191:1196–1203CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Tarun AS, Peng X, Dumpit RF et al (2008) A combined transcriptome and proteome survey of malaria parasite liver stages. Proc Natl Acad Sci U S A 105(1):305–310CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Nixon CP, Friedman J, Treanor K et al (2005) Antibodies to rhoptry-associated membrane antigen predict resistance to Plasmodium falciparum. J Infect Dis 192:861–869CrossRefPubMedGoogle Scholar
  46. 46.
    Raj DK, Nixon CP, Nixon CE et al (2014) Antibodies to PfSEA-1 block parasite egress from RBCs and protect against malaria infection. Science 344:871–877CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sundaresh S, Doolan DL, Hirst S et al (2006) Identification of humoral immune responses in protein microarrays using DNA microarray data analysis techniques. Bioinformatics 22:1760–1766CrossRefPubMedGoogle Scholar
  48. 48.
    Baldi P, Long AD (2001) A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17:509–519CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Karlsruhe Institute of Technology, Institute of Microstructure TechnologyEggenstein-Leopoldshafen, KarlsruheGermany
  2. 2.Center for Infectious Diseases, Parasitology UnitHeidelberg University HospitalHeidelbergGermany
  3. 3.Center for Pediatric and Adolescent Medicine, General PediatricsHeidelberg University HospitalHeidelbergGermany
  4. 4.HeidelbergGermany
  5. 5.4 MalVa GmbHHeidelbergGermany

Personalised recommendations