Skip to main content

Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomics Data

  • Protocol
Plant Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1374))

Abstract

Ensembl Plants (http://plants.ensembl.org) is an integrative resource presenting genome-scale information for a growing number of sequenced plant species (currently 33). Data provided includes genome sequence, gene models, functional annotation, and polymorphic loci. Various additional information are provided for variation data, including population structure, individual genotypes, linkage, and phenotype data. In each release, comparative analyses are performed on whole genome and protein sequences, and genome alignments and gene trees are made available that show the implied evolutionary history of each gene family. Access to the data is provided through a genome browser incorporating many specialist interfaces for different data types, and through a variety of additional methods for programmatic access and data mining. These access routes are consistent with those offered through the Ensembl interface for the genomes of non-plant species, including those of plant pathogens, pests, and pollinators.

Ensembl Plants is updated 4–5 times a year and is developed in collaboration with our international partners in the Gramene (http://www.gramene.org) and transPLANT projects (http://www.transplantdb.org).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ribaut JM, Hoisington D (1998) Marker-assisted selection: new tools and strategies. Trends Plant Sci 3(6):236–239

    Article  Google Scholar 

  2. Goddard ME, Hayes BJ (2007) Genomic selection. J Anim Breed Genet 124(6):323–330

    Article  CAS  PubMed  Google Scholar 

  3. Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13(2):174–180

    Article  CAS  PubMed  Google Scholar 

  4. Kleinhofs A, Behki R (1977) Prospects for plant genome modification by nonconventional methods. Annu Rev Genet 11(1):79–101

    Article  CAS  PubMed  Google Scholar 

  5. Hartung F, Schiemann J (2014) Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J 78(5):742–752

    Article  CAS  PubMed  Google Scholar 

  6. http://wikipedia.org/wiki/List_of_sequenced_plant_genomes. 2012

  7. http://faostat.fao.org/. 2011

  8. Kersey PJ, Allen JE, Christensen M et al (2014) Ensembl genomes 2013: scaling up access to genome-wide data. Nucleic Acids Res 42(D1):D546–D552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Monaco MK, Stein J, Naithani S et al (2014) Gramene 2013: comparative plant genomics resources. Nucleic Acids Res 42(D1):D1193–D1199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kasprzyk A (2011) BioMart: driving a paradigm change in biological data management. Database 2011:bar049

    Article  PubMed Central  PubMed  Google Scholar 

  11. Jones P, Binns D, Chang H-Y et al (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9):1236–1240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. McLaren W, Pritchard B, Rios D et al (2010) Deriving the consequences of genomic variants with the Ensembl API and SNP effect predictor. Bioinformatics 26(16):2069–2070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Harris RS (2007) Improved pairwise alignment of genomic DNA. ProQuest, Ann Arbor, p 84

    Google Scholar 

  14. Schwartz S, James Kent W, Smit A et al (2003) Human–mouse alignments with BLASTZ. Genome Res 13(1):103–107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12(4):656–664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D (2003) Evolution’s cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci 100(20):11484–11489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Vilella AJ, Severin J, Ureta-Vidal A et al (2009) EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res 19(2):327–335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Cooper L, Ramona L, Walls JE et al (2013) The plant ontology as a tool for comparative plant anatomy and genomic analyses. Plant Cell Physiol 54(2):e1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Burge S, Kelly E, Lonsdale D et al (2012) Manual GO annotation of predictive protein signatures: the InterPro approach to GO curation. Database 2012:bar068

    PubMed Central  PubMed  Google Scholar 

  21. Eilbeck K, Lewis SE, Mungall CJ et al (2005) The Sequence Ontology: a tool for the unification of genome annotations. Genome Biol 6(5):R44

    Article  PubMed Central  PubMed  Google Scholar 

  22. Chamala S, Chanderbali AS, Der JP et al (2013) Assembly and validation of the genome of the nonmodel basal angiosperm Amborella. Science 342(6165):1516–1517

    Article  CAS  PubMed  Google Scholar 

  23. Hu TT, Pattyn P, Bakker EG et al (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43(5):476–481

    Article  PubMed Central  PubMed  Google Scholar 

  24. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796

    Article  Google Scholar 

  25. D’Hont A, Denoeud F, Aury JM et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488(7410):213–217

    Article  PubMed  Google Scholar 

  26. International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491(7426):711–716

    Google Scholar 

  27. International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463(7282):763–768

    Article  Google Scholar 

  28. Brassica rapa Genome Sequencing Project Consortium (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43(10):1035–1039

    Article  Google Scholar 

  29. Merchant SS, Prochnik SE, Vallon O et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Matsuzaki M, Misumi O, Shin-I T et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428(6983):653–657

    Article  CAS  PubMed  Google Scholar 

  31. Consortium for Grapevine Genome Characterization, (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467

    Article  Google Scholar 

  32. Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115

    Article  CAS  PubMed  Google Scholar 

  33. Young ND, Debellé F, Oldroyd GE et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480(7378):520–524

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Bennetzen JL, Schmutz J, Wang H et al (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30(6):555–561

    Article  CAS  PubMed  Google Scholar 

  35. Rensing SA, Lang D, Zimmer AD et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319(5859):64–69

    Article  CAS  PubMed  Google Scholar 

  36. Tuskan GA, Difazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604

    Article  CAS  PubMed  Google Scholar 

  37. Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475(7355):189–195

    Article  Google Scholar 

  38. International Peach Genome Initiative (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45(5):487–494

    Google Scholar 

  39. Chen J, Huang Q, Gao D et al (2013) Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nat Commun 4:1595

    Article  PubMed Central  PubMed  Google Scholar 

  40. http://plants.ensembl.org/Oryza_glaberrima/Info/Annotation/

  41. Yu J, Hu S, Wang J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296(5565):79–92

    Article  CAS  PubMed  Google Scholar 

  42. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436(7052):793–800

    Article  Google Scholar 

  43. Banks JA, Nishiyama T, Hasebe M et al (2011) The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332(6032):960–963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457(7229):551–556

    Article  CAS  PubMed  Google Scholar 

  45. Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178–183

    Article  CAS  PubMed  Google Scholar 

  46. Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485(7400):635–641

    Article  Google Scholar 

  47. Jia J, Zhao S, Kong X et al (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496(7443):91–95

    Article  CAS  PubMed  Google Scholar 

  48. http://plants.ensembl.org/Triticum_aestivum/Info/Annotation/

  49. Ling HQ, Zhao S, Liu D et al (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496(7443):87–90

    Article  CAS  PubMed  Google Scholar 

  50. Clark RM, Schweikert G, Toomajian C et al (2007) Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317(5836):338–342

    Article  CAS  PubMed  Google Scholar 

  51. Atwell S, Huang YS, Vilhjálmsson BJ et al (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465(7298):627–631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Fox SE, Preece J, Kimbrel JA et al (2013) Sequencing and de novo transcriptome assembly of Brachypodium sylvaticum (Poaceae). Appl Plant Sci 1(3)

    Google Scholar 

  53. Yu J, Wang J, Lin W et al (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3(2), e38

    Article  PubMed Central  PubMed  Google Scholar 

  54. Zhao K, Wright M, Kimball J et al (2010) Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS One 5(5):e10780

    Article  PubMed Central  PubMed  Google Scholar 

  55. McNally KL, Childs KL, Bohnert R et al (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci 106(30):12273–12278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Morris GP, Ramu P, Deshpande SP et al (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci 110(2):453–458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Myles S, Chia J-M, Hurwitz B et al (2010) Rapid genomic characterization of the genus vitis. PLoS One 5(1), e8219

    Article  PubMed Central  PubMed  Google Scholar 

  58. Chia JM, Song C, Bradbury PJ et al (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 44(7):803–807

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

“The transPLANT project is funded by the European Commission within its 7th Framework Programme, under the thematic area “Infrastructures”, contract number 283496”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Bolser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bolser, D., Staines, D.M., Pritchard, E., Kersey, P. (2016). Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomics Data. In: Edwards, D. (eds) Plant Bioinformatics. Methods in Molecular Biology, vol 1374. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3167-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3167-5_6

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3166-8

  • Online ISBN: 978-1-4939-3167-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics