Skip to main content

Pharmaceutics of Nanoparticles

  • Protocol
Nanomaterials in Pharmacology

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Drug-incorporating nanoparticles (nanodrugs) have been approved for clinical use. Incorporating water-insoluble drugs such as anticancer agents, antimycotics, and photosensitizers into nanoparticles improves their bioavailability. Moreover, the essential advantage of nanodrugs is a reduction in adverse effects. This leads to an improvement in the quality of life (QOL) of patients. In this chapter, we focus on the pharmacokinetics and toxicity of clinically approved nanodrugs and of nanodrugs that are currently undergoing clinical trials. In addition, the preparation methods and structural features of nanodrugs are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McKiernan JM, Barlow LJ, Laudano MA, Mann MJ, Petrylak DP, Benson MC (2011) A phase I trial of intravesical nanoparticle albumin-bound paclitaxel in the treatment of bacillus Calmette-Guerin refractory nonmuscle invasive bladder cancer. J Urol 186(2):448–451

    Article  CAS  PubMed  Google Scholar 

  2. Tillmanns TD, Lowe MP, Walker MS, Stepanski EJ, Schwartzberg LS (2013) Phase II clinical trial of bevacizumab with albumin-bound paclitaxel in patients with recurrent, platinum-resistant primary epithelial ovarian or primary peritoneal carcinoma. Gynecol Oncol 128(2):221–228

    Article  CAS  PubMed  Google Scholar 

  3. Kratz F, Muller-Driver R, Hofmann I, Drevs J, Unger C (2000) A novel macromolecular prodrug concept exploiting endogenous serum albumin as a drug carrier for cancer chemotherapy. J Med Chem 43(7):1253–1256

    Article  CAS  PubMed  Google Scholar 

  4. John TA, Vogel SM, Tiruppathi C, Malik AB, Minshall RD (2003) Quantitative analysis of albumin uptake and transport in the rat microvessel endothelial monolayer. Am J Physiol Lung Cell Mol Physiol 284(1):L187–L196

    Article  CAS  PubMed  Google Scholar 

  5. Minshall RD, Sessa WC, Stan RV, Anderson RG, Malik AB (2003) Caveolin regulation of endothelial function. Am J Physiol Lung Cell Mol Physiol 285(6):L1179–L1183

    Article  CAS  PubMed  Google Scholar 

  6. Vogel SM, Minshall RD, Pilipovic M, Tiruppathi C, Malik AB (2001) Albumin uptake and transcytosis in endothelial cells in vivo induced by albumin-binding protein. Am J Physiol Lung Cell Mol Physiol 281(6):L1512–L1522

    CAS  PubMed  Google Scholar 

  7. Tiruppathi C, Song W, Bergenfeldt M, Sass P, Malik AB (1997) Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. J Biol Chem 272(41):25968–25975

    Article  CAS  PubMed  Google Scholar 

  8. Simionescu M, Gafencu A, Antohe F (2002) Transcytosis of plasma macromolecules in endothelial cells: a cell biological survey. Microsc Res Tech 57(5):269–288

    Article  CAS  PubMed  Google Scholar 

  9. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392

    CAS  PubMed  Google Scholar 

  10. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1-2):271–284

    Article  CAS  PubMed  Google Scholar 

  11. Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A et al (2006) Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 12(4):1317–1324

    Article  CAS  PubMed  Google Scholar 

  12. Desai N, Trieu V, Damascelli B, Soon-Shiong P (2009) SPARC expression correlates with tumor response to albumin-bound paclitaxel in head and neck cancer patients. Transl Oncol 2(2):59–64

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kratz F (2008) Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 132(3):171–183

    Article  CAS  PubMed  Google Scholar 

  14. Stehle G, Sinn H, Wunder A, Schrenk HH, Stewart JC, Hartung G et al (1997) Plasma protein (albumin) catabolism by the tumor itself – implications for tumor metabolism and the genesis of cachexia. Crit Rev Oncol Hematol 26(2):77–100

    Article  CAS  PubMed  Google Scholar 

  15. Scheff RJ (2008) Breast cancer and the new taxanes: focus on nab-paclitaxel. Commun Oncol 5(7 Suppl 8):7–13

    Google Scholar 

  16. Weiss RB, Donehower RC, Wiernik PH, Ohnuma T, Gralla RJ, Trump DL et al (1990) Hypersensitivity reactions from taxol. J Clin Oncol 8(7):1263–1268

    CAS  PubMed  Google Scholar 

  17. Rowinsky EK, Donehower RC (1995) Paclitaxel (taxol). N Engl J Med 332(15):1004–1014

    Article  CAS  PubMed  Google Scholar 

  18. Finley RS, Rowinsky EK (1994) Patient care issues: the management of paclitaxel-related toxicities. Ann Pharmacother 28(5 Suppl):S27–S30

    CAS  PubMed  Google Scholar 

  19. Windebank AJ, Blexrud MD, de Groen PC (1994) Potential neurotoxicity of the solvent vehicle for cyclosporine. J Pharmacol Exp Ther 268(2):1051–1056

    CAS  PubMed  Google Scholar 

  20. Waugh WN, Trissel LA, Stella VJ (1991) Stability, compatibility, and plasticizer extraction of taxol (NSC-125973) injection diluted in infusion solutions and stored in various containers. Am J Hosp Pharm 48(7):1520–1524

    CAS  PubMed  Google Scholar 

  21. Hidalgo M, Aylesworth C, Hammond LA, Britten CD, Weiss G, Stephenson J Jr et al (2001) Phase I and pharmacokinetic study of BMS-184476, a taxane with greater potency and solubility than paclitaxel. J Clin Oncol 19(9):2493–2503

    CAS  PubMed  Google Scholar 

  22. Unger C, Haring B, Medinger M, Drevs J, Steinbild S, Kratz F et al (2007) Phase I and pharmacokinetic study of the (6-maleimidocaproyl)hydrazone derivative of doxorubicin. Clin Cancer Res 13(16):4858–4866

    Article  CAS  PubMed  Google Scholar 

  23. Barenholz Y (2012) Doxil(R) – the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134

    Article  CAS  PubMed  Google Scholar 

  24. Hau P, Fabel K, Baumgart U, Rummele P, Grauer O, Bock A et al (2004) Pegylated liposomal doxorubicin-efficacy in patients with recurrent high-grade glioma. Cancer 100(6):1199–1207

    Article  CAS  PubMed  Google Scholar 

  25. Anders CK, Adamo B, Karginova O, Deal AM, Rawal S, Darr D et al (2013) Pharmacokinetics and efficacy of PEGylated liposomal doxorubicin in an intracranial model of breast cancer. PLoS One 8(5), e61359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Gill SE, Savage K, Wysham WZ, Blackhurst DW, Winter WE, Puls LE (2013) Continuing routine cardiac surveillance in long-term use of pegylated liposomal doxorubicin: is it necessary? Gynecol Oncol 129(3):544–547

    Article  CAS  PubMed  Google Scholar 

  27. Rahman AM, Yusuf SW, Ewer MS (2007) Anthracycline-induced cardiotoxicity and the cardiac-sparing effect of liposomal formulation. Int J Nanomedicine 2(4):567–583

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Batist G, Ramakrishnan G, Rao CS, Chandrasekharan A, Gutheil J, Guthrie T et al (2001) Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol 19(5):1444–1454

    CAS  PubMed  Google Scholar 

  29. Swenson CE, Perkins WR, Roberts P, Janoff AS (2001) Liposome technology and the development of Myocet™ (liposomal doxorubicin citrate). Breast 10(Suppl 2(0)):1–7

    Article  Google Scholar 

  30. Sparano JA, Winer EP (2001) Liposomal anthracyclines for breast cancer. Semin Oncol 28(4 Suppl 12):32–40

    Article  CAS  PubMed  Google Scholar 

  31. Clerc S, Barenholz Y (1995) Loading of amphipathic weak acids into liposomes in response to transmembrane calcium acetate gradients. Biochim Biophys Acta 1240(2):257–265

    Article  PubMed  Google Scholar 

  32. Haran G, Cohen R, Bar LK, Barenholz Y (1993) Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta 1151(2):201–215

    Article  CAS  PubMed  Google Scholar 

  33. Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R et al (1994) Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 54(4):987–992

    CAS  PubMed  Google Scholar 

  34. Soloman R, Gabizon AA (2008) Clinical pharmacology of liposomal anthracyclines: focus on pegylated liposomal Doxorubicin. Clin Lymphoma Myeloma 8(1):21–32

    Article  PubMed  Google Scholar 

  35. Szebeni J, Muggia F, Gabizon A, Barenholz Y (2011) Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: prediction and prevention. Adv Drug Deliv Rev 63(12):1020–1030

    Article  CAS  PubMed  Google Scholar 

  36. Szebeni J, Bedocs P, Rozsnyay Z, Weiszhar Z, Urbanics R, Rosivall L et al (2012) Liposome-induced complement activation and related cardiopulmonary distress in pigs: factors promoting reactogenicity of Doxil and Am Bisome. Nanomedicine 8(2):176–184

    Article  CAS  PubMed  Google Scholar 

  37. Chanan-Khan A, Szebeni J, Savay S, Liebes L, Rafique NM, Alving CR et al (2003) Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil): possible role in hypersensitivity reactions. Ann Oncol 14(9):1430–1437

    Article  CAS  PubMed  Google Scholar 

  38. Proffitt JPA-M, Richard T (2008) Development, characterization, efficacy and mode of action of ambisome, a unilamellar liposomal formulation of amphotericin B. http://dxdoiorg/103109/08982109309150729

    Google Scholar 

  39. Kshirsagar NA, Pandya SK, Kirodian GB, Sanath S (2005) Liposomal drug delivery system from laboratory to clinic. J Postgrad Med 51(Suppl 1):S5–S15

    PubMed  Google Scholar 

  40. Serrano DR, Hernandez L, Fleire L, Gonzalez-Alvarez I, Montoya A, Ballesteros MP et al (2013) Hemolytic and pharmacokinetic studies of liposomal and particulate amphotericin B formulations. Int J Pharm 447(1–2):38–46

    Article  CAS  PubMed  Google Scholar 

  41. Lemke A, Kiderlen AF, Kayser O (2005) Amphotericin B. Appl Microbiol Biotechnol 68(2):151–162

    Article  CAS  PubMed  Google Scholar 

  42. Risovic V, Rosland M, Sivak O, Wasan KM, Bartlett K (2007) Assessing the antifungal activity of a new oral lipid-based amphotericin B formulation following administration to rats infected with Aspergillus fumigatus. Drug Dev Ind Pharm 33(7):703–707

    Article  CAS  PubMed  Google Scholar 

  43. Italia JL, Yahya MM, Singh D, Ravi Kumar MN (2009) Biodegradable nanoparticles improve oral bioavailability of amphotericin B and show reduced nephrotoxicity compared to intravenous Fungizone. Pharm Res 26(6):1324–1331

    Article  CAS  PubMed  Google Scholar 

  44. Golenser J, Domb A (2006) New formulations and derivatives of amphotericin B for treatment of leishmaniasis. Mini Rev Med Chem 6(2):153–162

    Article  CAS  PubMed  Google Scholar 

  45. Kayser O, Olbrich C, Yardley V, Kiderlen AF, Croft SL (2003) Formulation of amphotericin B as nanosuspension for oral administration. Int J Pharm 254(1):73–75

    Article  CAS  PubMed  Google Scholar 

  46. Delmas G, Park S, Chen ZW, Tan F, Kashiwazaki R, Zarif L et al (2002) Efficacy of orally delivered cochleates containing amphotericin B in a murine model of aspergillosis. Antimicrob Agents Chemother 46(8):2704–2707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Allison RR, Sibata CH (2010) Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagnosis Photodyn Ther 7(2):61–75

    Article  CAS  PubMed  Google Scholar 

  48. Shigenobu Yano, Shiho Hirohara, Makoto Obata, Yuichiro Hagiya, Shun-ichiro Ogura, Atsushi Ikeda, Hiromi Kataoka, Mamoru Tanaka, Takashi Joh et al (2011) Current states and future views in photodynamic therapy. J Photochem. Photobiol. C: Photochemistry Res 12(1):46–67

    Google Scholar 

  49. Manyak MJ, Russo A, Smith PD, Glatstein E (1988) Photodynamic therapy. J Clin Oncol 6(2):380–391

    CAS  PubMed  Google Scholar 

  50. Roberts WG, Hasan T (1992) Role of neovasculature and vascular permeability on the tumor retention of photodynamic agents. Cancer Res 52(4):924–930

    CAS  PubMed  Google Scholar 

  51. Zhou CN (1989) Mechanisms of tumor necrosis induced by photodynamic therapy. J Photochem Photobiol B Biol 3(3):299–318

    Article  CAS  Google Scholar 

  52. Schmidt-Erfurth U, Hasan T, Gragoudas E, Michaud N, Flotte TJ, Birngruber R (1994) Vascular targeting in photodynamic occlusion of subretinal vessels. Ophthalmology 101(12):1953–1961

    Article  CAS  PubMed  Google Scholar 

  53. Miller JW, Walsh AW, Kramer M, Hasan T, Michaud N, Flotte TJ et al (1995) Photodynamic therapy of experimental choroidal neovascularization using lipoprotein-delivered benzoporphyrin. Arch Ophthalmol 113(6):810–818

    Article  CAS  PubMed  Google Scholar 

  54. Chowdhary RK, Shariff I, Dolphin D (2003) Drug release characteristics of lipid based benzoporphyrin derivative. J Pharm Pharm Sci 6(1):13–19

    CAS  PubMed  Google Scholar 

  55. Aveline BM, Hasan T, Redmond RW (1995) The effects of aggregation, protein binding and cellular incorporation on the photophysical properties of benzoporphyrin derivative monoacid ring A (BPDMA). J Photochem Photobiol B Biol 30(2-3):161–169

    Article  CAS  Google Scholar 

  56. Kramer M, Miller JW, Michaud N, Moulton RS, Hasan T, Flotte TJ et al (1996) Liposomal benzoporphyrin derivative verteporfin photodynamic therapy. Selective treatment of choroidal neovascularization in monkeys. Ophthalmology 103(3):427–438

    Article  CAS  PubMed  Google Scholar 

  57. Husain D, Miller JW, Michaud N, Connolly E, Flotte TJ, Gragoudas ES (1996) Intravenous infusion of liposomal benzoporphyrin derivative for photodynamic therapy of experimental choroidal neovascularization. Arch Ophthalmol 114(8):978–985

    Article  CAS  PubMed  Google Scholar 

  58. Miller JW, Schmidt-Erfurth U, Sickenberg M, Pournaras CJ, Laqua H, Barbazetto I et al (1999) Photodynamic therapy with verteporfin for choroidal neovascularization caused by age-related macular degeneration: results of a single treatment in a phase 1 and 2 study. Arch Ophthalmol 117(9):1161–1173

    Article  CAS  PubMed  Google Scholar 

  59. Schmidt-Erfurth U, Miller JW, Sickenberg M, Laqua H, Barbazetto I, Gragoudas ES et al (1999) Photodynamic therapy with verteporfin for choroidal neovascularization caused by age-related macular degeneration: results of retreatments in a phase 1 and 2 study. Arch Ophthalmol 117(9):1177–1187

    Article  CAS  PubMed  Google Scholar 

  60. Sickenberg M, Schmidt-Erfurth U, Miller JW, Pournaras CJ, Zografos L, Piguet B et al (2000) A preliminary study of photodynamic therapy using verteporfin for choroidal neovascularization in pathologic myopia, ocular histoplasmosis syndrome, angioid streaks, and idiopathic causes. Arch Ophthalmol 118(3):327–336

    Article  CAS  PubMed  Google Scholar 

  61. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M et al (1998) Photodynamic therapy. J Natl Cancer Inst 90(12):889–905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Kuntsche J, Freisleben I, Steiniger F, Fahr A (2010) Temoporfin-loaded liposomes: physicochemical characterization. Eur J Pharm Sci 40(4):305–315

    Article  CAS  PubMed  Google Scholar 

  63. Compagnin C, Moret F, Celotti L, Miotto G, Woodhams JH, MacRobert AJ et al (2011) Meta-tetra(hydroxyphenyl)chlorin-loaded liposomes sterically stabilised with poly(ethylene glycol) of different length and density: characterisation, in vitro cellular uptake and phototoxicity. Photochem Photobiol Sci 10(11):1751–1759

    Article  CAS  PubMed  Google Scholar 

  64. Buchholz J, Kaser-Hotz B, Khan T, Rohrer Bley C, Melzer K, Schwendener RA et al (2005) Optimizing photodynamic therapy: in vivo pharmacokinetics of liposomal meta-(tetrahydroxyphenyl)chlorin in feline squamous cell carcinoma. Clin Cancer Res 11(20):7538–7544

    Article  CAS  PubMed  Google Scholar 

  65. Ohlerth S, Laluhova D, Buchholz J, Roos M, Walt H, Kaser-Hotz B (2006) Changes in vascularity and blood volume as a result of photodynamic therapy can be assessed with power Doppler ultrasonography. Lasers Surg Med 38(3):229–234

    Article  PubMed  Google Scholar 

  66. Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47(1):113–131

    Article  CAS  PubMed  Google Scholar 

  67. Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112(3):630–648

    Article  CAS  PubMed  Google Scholar 

  68. Reddy ST, van der Vlies AJ, Simeoni E, Angeli V, Randolph GJ, O’Neil CP et al (2007) Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 25(10):1159–1164

    Article  CAS  PubMed  Google Scholar 

  69. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M et al (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6(12):815–823

    Article  CAS  PubMed  Google Scholar 

  70. Yamamoto Y, Hyodo I, Takigahira M, Koga Y, Yasunaga M, Harada M et al (2014) Effect of combined treatment with the epirubicin-incorporating micelles (NC-6300) and 1,2-diaminocyclohexane platinum (II)-incorporating micelles (NC-4016) on a human gastric cancer model. Int J Cancer 135(1):214–223

    Article  CAS  PubMed  Google Scholar 

  71. Mishra GP, Nguyen D, Alani AW (2013) Inhibitory effect of paclitaxel and rapamycin individual and dual drug-loaded polymeric micelles in the angiogenic cascade. Mol Pharm 10(5):2071–2078

    Article  CAS  PubMed  Google Scholar 

  72. Stewart S, Jablonowski H, Goebel FD, Arasteh K, Spittle M, Rios A et al (1998) Randomized comparative trial of pegylated liposomal doxorubicin versus bleomycin and vincristine in the treatment of AIDS-related Kaposi’s sarcoma. International Pegylated Liposomal Doxorubicin Study Group. J Clin Oncol 16(2):683–691

    CAS  PubMed  Google Scholar 

  73. Northfelt DW, Dezube BJ, Thommes JA, Miller BJ, Fischl MA, Friedman-Kien A et al (1998) Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: results of a randomized phase III clinical trial. J Clin Oncol 16(7):2445–2451

    CAS  PubMed  Google Scholar 

  74. Cianfrocca M, Lee S, Von Roenn J, Tulpule A, Dezube BJ, Aboulafia DM et al (2010) Randomized trial of paclitaxel versus pegylated liposomal doxorubicin for advanced human immunodeficiency virus-associated Kaposi sarcoma: evidence of symptom palliation from chemotherapy. Cancer 116(16):3969–3977

    Article  PubMed Central  PubMed  Google Scholar 

  75. Gordon AN, Fleagle JT, Guthrie D, Parkin DE, Gore ME, Lacave AJ (2001) Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. J Clin Oncol 19(14):3312–3322

    CAS  PubMed  Google Scholar 

  76. Fujisaka Y, Tamura T, Ohe Y, Kunitoh H, Sekine I, Yamamoto N et al (2006) Pharmacokinetics and pharmacodynamics of weekly epoetin beta in lung cancer patients. Jpn J Clin Oncol 36(8):477–482

    Article  PubMed  Google Scholar 

  77. Katsumata N, Fujiwara Y, Kamura T, Nakanishi T, Hatae M, Aoki D et al (2008) Phase II clinical trial of pegylated liposomal doxorubicin (JNS002) in Japanese patients with mullerian carcinoma (epithelial ovarian carcinoma, primary carcinoma of fallopian tube, peritoneal carcinoma) having a therapeutic history of platinum-based chemotherapy: a Phase II Study of the Japanese Gynecologic Oncology Group. Jpn J Clin Oncol 38(11):777–785

    Article  PubMed Central  PubMed  Google Scholar 

  78. Orlowski RZ, Nagler A, Sonneveld P, Blade J, Hajek R, Spencer A et al (2007) Randomized phase III study of pegylated liposomal doxorubicin plus bortezomib compared with bortezomib alone in relapsed or refractory multiple myeloma: combination therapy improves time to progression. J Clin Oncol 25(25):3892–3901

    Article  CAS  PubMed  Google Scholar 

  79. Sonneveld P, Hajek R, Nagler A, Spencer A, Blade J, Robak T et al (2008) Combined pegylated liposomal doxorubicin and bortezomib is highly effective in patients with recurrent or refractory multiple myeloma who received prior thalidomide/lenalidomide therapy. Cancer 112(7):1529–1537

    Article  CAS  PubMed  Google Scholar 

  80. Swenson CE, Bolcsak LE, Batist G, Guthrie TH Jr, Tkaczuk KH, Boxenbaum H et al (2003) Pharmacokinetics of doxorubicin administered i.v. as Myocet (TLC D-99; liposome-encapsulated doxorubicin citrate) compared with conventional doxorubicin when given in combination with cyclophosphamide in patients with metastatic breast cancer. Anticancer Drugs 14(3):239–246

    Article  CAS  PubMed  Google Scholar 

  81. Mross K, Niemann B, Massing U, Drevs J, Unger C, Bhamra R et al (2004) Pharmacokinetics of liposomal doxorubicin (TLC-D99; Myocet) in patients with solid tumors: an open-label, single-dose study. Cancer Chemother Pharmacol 54(6):514–524

    Article  CAS  PubMed  Google Scholar 

  82. Gill PS, Wernz J, Scadden DT, Cohen P, Mukwaya GM, von Roenn JH et al (1996) Randomized phase III trial of liposomal daunorubicin versus doxorubicin, bleomycin, and vincristine in AIDS-related Kaposi’s sarcoma. J Clin Oncol 14(8):2353–2364

    CAS  PubMed  Google Scholar 

  83. Latagliata R, Breccia M, Fazi P, Iacobelli S, Martinelli G, Di Raimondo F et al (2008) Liposomal daunorubicin versus standard daunorubicin: long term follow-up of the GIMEMA GSI 103 AMLE randomized trial in patients older than 60 years with acute myelogenous leukaemia. Br J Haematol 143(5):681–689

    Article  CAS  PubMed  Google Scholar 

  84. Glantz MJ, LaFollette S, Jaeckle KA, Shapiro W, Swinnen L, Rozental JR et al (1999) Randomized trial of a slow-release versus a standard formulation of cytarabine for the intrathecal treatment of lymphomatous meningitis. J Clin Oncol 17(10):3110–3116

    CAS  PubMed  Google Scholar 

  85. Rodriguez MA, Pytlik R, Kozak T, Chhanabhai M, Gascoyne R, Lu B et al (2009) Vincristine sulfate liposomes injection (Marqibo) in heavily pretreated patients with refractory aggressive non-Hodgkin lymphoma: report of the pivotal phase 2 study. Cancer 115(15):3475–3482

    Article  CAS  PubMed  Google Scholar 

  86. Yamamoto Y, Kawano I, Iwase H (2011) Nab-paclitaxel for the treatment of breast cancer: efficacy, safety, and approval. Onco Targets Ther 4:123–136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P et al (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23(31):7794–7803

    Article  CAS  PubMed  Google Scholar 

  88. Taiho Pharmaceutical Co., Ltd. (2013) Antitumor agent “ABRAXANE® I.V. Infusion 100 mg” approved for additional indications of gastric cancer and non-small cell lung cancer. http://www.taiho.co.jp/english/news/20130221.html

  89. Socinski MA, Okamoto I, Hon JK, Hirsh V, Dakhil SR, Page RD et al (2013) Safety and efficacy analysis by histology of weekly nab-paclitaxel in combination with carboplatin as first-line therapy in patients with advanced non-small-cell lung cancer. Ann Oncol 24(9):2390–2396

    Article  CAS  PubMed  Google Scholar 

  90. Von Hoff DD, Ramanathan RK, Borad MJ, Laheru DA, Smith LS, Wood TE et al (2011) Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J Clin Oncol 29(34):4548–4554

    Article  Google Scholar 

  91. Azab M, Boyer DS, Bressler NM, Bressler SB, Cihelkova I, Hao Y et al (2005) Verteporfin therapy of subfoveal minimally classic choroidal neovascularization in age-related macular degeneration: 2-year results of a randomized clinical trial. Arch Ophthalmol 123(4):448–457

    Article  PubMed  Google Scholar 

  92. Ringden O, Meunier F, Tollemar J, Ricci P, Tura S, Kuse E et al (1991) Efficacy of amphotericin B encapsulated in liposomes (AmBisome) in the treatment of invasive fungal infections in immunocompromised patients. J Antimicrob Chemother 28(Suppl B):73–82

    Article  PubMed  Google Scholar 

  93. Meunier F, Prentice HG, Ringden O (1991) Liposomal amphotericin B (AmBisome): safety data from a phase II/III clinical trial. J Antimicrob Chemother 28(Suppl B):83–91

    Article  PubMed  Google Scholar 

  94. Boswell GW, Bekersky I, Buell D, Hiles R, Walsh TJ (1998) Toxicological profile and pharmacokinetics of a unilamellar liposomal vesicle formulation of amphotericin B in rats. Antimicrob Agents Chemother 42(2):263–268

    PubMed Central  CAS  PubMed  Google Scholar 

  95. van Etten EW, van den Heuvel-de Groot C, Bakker-Woudenberg IA (1993) Efficacies of amphotericin B-desoxycholate (Fungizone), liposomal amphotericin B (AmBisome) and fluconazole in the treatment of systemic candidosis in immunocompetent and leucopenic mice. J Antimicrob Chemother 32(5):723–739

    Article  PubMed  Google Scholar 

  96. Kato K, Chin K, Yoshikawa T, Yamaguchi K, Tsuji Y, Esaki T et al (2012) Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Invest New Drugs 30(4):1621–1627

    Article  CAS  PubMed  Google Scholar 

  97. Matsumura TH, Toshihiko D, Takako E-N, Ken K, Yasuhide Y, Yasuhiro S et al (2010) Phase I study of NK012, a novel SN-38-incorporating micellar nanoparticle, in adult patients with solid tumors. Clin Cancer Res 16(20):5058–5066.

    Google Scholar 

  98. Nakanishi T, Fukushima S, Okamoto K, Suzuki M, Matsumura Y, Yokoyama M et al (2001) Development of the polymer micelle carrier system for doxorubicin. J Control Release 74(1–3):295–302

    Article  CAS  PubMed  Google Scholar 

  99. Plummer R, Wilson RH, Calvert H, Boddy AV, Griffin M, Sludden J et al (2011) A phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br J Cancer 104(4):593–598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Takahashi A, Yamamoto Y, Yasunaga M, Koga Y, Kuroda J, Takigahira M et al (2013) NC-6300, an epirubicin-incorporating micelle, extends the antitumor effect and reduces the cardiotoxicity of epirubicin. Cancer Sci 104(7):920–925

    Article  CAS  PubMed  Google Scholar 

  101. Pittella F, Cabral H, Maeda Y, Mi P, Watanabe S, Takemoto H et al (2014) Systemic siRNA delivery to a spontaneous pancreatic tumor model in transgenic mice by PEGylated calcium phosphate hybrid micelles. J Control Release 178:18–24

    Article  CAS  PubMed  Google Scholar 

  102. Pittella F, Miyata K, Maeda Y, Suma T, Watanabe S, Chen Q et al (2012) Pancreatic cancer therapy by systemic administration of VEGF siRNA contained in calcium phosphate/charge-conversional polymer hybrid nanoparticles. J Control Release 161(3):868–874

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was partially supported by a research program for development of intelligent Tokushima artificial exosome (iTEX) from Tokushima University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuhiro Ishida Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ukawa, M., Ando, H., Shimizu, T., Ishida, T. (2016). Pharmaceutics of Nanoparticles. In: Lu, ZR., Sakuma, S. (eds) Nanomaterials in Pharmacology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3121-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3121-7_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3120-0

  • Online ISBN: 978-1-4939-3121-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics