Skip to main content

Advertisement

Log in

Amphotericin B

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Invasive fungal infections are a major cause of morbidity and mortality in immunodeficient individuals (such as AIDS patients) and in transplant recipients or tumor patients undergoing immunosuppressive chemotherapy. Amphotericin B is one of the oldest, yet most efficient antimycotic agents. However, its usefulness is limited due to dose-dependent side-effects, notably nephrotoxicity. In order to improve its safety margin, new pharmaceutical formulations of amphotericin B have been designed especially to reduce its detrimental effects on the kidneys. Since the 1980s, a wide variety of new amphotericin B formulations have been brought forward for clinical testing, many of which were approved and reached market value in the 1990s. This review describes and discusses the molecular genetics, pharmacological, toxicological, and clinical aspects of amphotericin B itself and many of its innovative formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adedoyin A, Bernardo JF, Swenson CE, Bolsack LE, Horwith G, Wit S de, Kelly E, Klasterksy J, Sculier JP, Valeriola D de, Anaissie E, Lopez-Berestein G, Llanos-Cuentas A, Boyle A, Branch RA (1997) Pharmacokinetic profile of ABELCET (amphotericin B lipid complex injection): combined experience from phase I and phase II studies. Antimicrob Agents Chemother 41:2201–2208

    Google Scholar 

  • Adler-Moore J, Proffitt RT (2003) Effect of tissue penetration on AmBisome efficacy. Curr Opin Investig Drugs 4:179–185

    Google Scholar 

  • Anaissie EJ, Hachem R, Legrand C, Legenne P, Nelson P, Bodey GP (1992) Lack of activity of amphotericin B in systemic murine fusarial infection. J Infect Dis 165:1155–1157

    Google Scholar 

  • Aparicio JF, Caffrey P, Gil JA, Zotchev SB (2003) Polyene antibiotic biosynthesis gene clusters. Appl Microbiol Biotechnol 61:179–188

    Google Scholar 

  • Ayestaran A, Lopez RM, Montoro JB, Estibalez A, Pou L, Julia A, Lopez A, Pascual B (1996) Pharmacokinetics of conventional formulation versus fat emulsion formulation of amphotericin B in a group of patients with neutropenia. Antimicrob Agents Chemother 40:609–612

    Google Scholar 

  • Baginski M, Resat H, McCammon JA (1997) Molecular properties of amphotericin B membrane channel: a molecular dynamics simulation. Mol Pharmacol 52:560–570

    Google Scholar 

  • Barrett JP, Vardulaki KA, Conlon C, Cooke J, Daza-Ramirez P, Evans EG, Hawkey PM, Herbrecht R, Marks DI, Moraleda JM, Park GR, Senn SJ, Viscoli C, Amphotericin B Systematic Review Study Group (2003) A systematic review of the antifungal effectiveness and tolerability of amphotericin B formulations. Clin Ther 25:1295–1320

    Google Scholar 

  • Bates DW, Su L, Yu DT (2001) Mortality and costs of acute renal failure associated with amphotericin B therapy. Clin Infect Dis 32:686–693

    Google Scholar 

  • Bazile DV, Ropert C, Huve P, Verrecchia T, Marland M, Frydman A, Veillard M, Spenlehauer G (1992) Body distribution of fully biodegradable [14C]-poly(lactic acid) nanoparticles coated with albumin after parenteral administration to rats. Biomaterials 13:1093–1102

    Google Scholar 

  • Bekersky II, Fielding RM (1999) Lipid-based amphotericin B formulations: from animals to man. 2(6):230–236

  • Bekersky I, Fielding RM, Buell D, Lawrence II (2001) Pharmacokinetics, excretion, and mass balance of 14C after administration of 14C-cholesterol-labeled AmBisome to healthy volunteers. J Clin Pharmacol 41:963–971

    Google Scholar 

  • Bennett J (1995) Antimicrobial agents: antifungal agents. In: Hardman J, Limbird L (eds) Goodman & Gilman’s pharmacological basis of therapeutics. McGraw–Hill, New York, pp 1175–1790

    Google Scholar 

  • Bishara J, Weinberger M, Lin AY, Pitlik S (2001) Amphotericin B—not so terrible. Ann Pharmacother 35:308–310

    Google Scholar 

  • Boswell GW, Bekersky I, Buell D, Hiles R, Walsh TJ (1998a) Toxicological profile and pharmacokinetics of a unilamellar liposomal vesicle formulation of amphotericin B in rats. Antimicrob Agents Chemother 42:263–268

    Google Scholar 

  • Boswell GW, Buell D, Bekersky (1998b) AmBisome (liposomal amphotericin B): a comparative review. J Clin Pharmacol 38:583–592

    Google Scholar 

  • Bowden R, Chandrasekar P, White MH, Li X, Pietrelli L, Gurwith M, Burik JA van, Laverdiere M, Safrin S, Wingard JR (2002) A double-blind, randomized, controlled trial of amphotericin B colloidal dispersion versus amphotericin B for treatment of invasive aspergillosis in immunocompromised patiets. Clin Infect Dis 35:359–366

    Google Scholar 

  • Brajtburg J, Powderly WG, Kobayashi GS, Medoff G (1990) Amphotericin B: current understanding of mechanisms of action. Antimicrob Agents Chemother 34:183–188

    Google Scholar 

  • Caffrey P, Lynch S, Flood E, Finnan S, Oliynyk M (2001) Amphotericin B biosynthesis in Streptomyces nodosus: deductions from analysis of polyketide synthase and late genes. Chem Biol 8:713–723

    Article  CAS  PubMed  Google Scholar 

  • Canton E, Peman J, Gobernado M, Viudes A, Espinel-Ingroff A (2004) Patterns of amphotericin B killing kinetics against seven Candida species. Antimicrob Agents Chemother 48:2477–2482

    Google Scholar 

  • Carmody M, Byrne B, Murphy B, Breen C, Lynch S, Flood E, Finnan S, Caffrey P (2004) Analysis and manipulation of amphotericin biosynthetic genes by means of modified phage KC515 transduction techniques. Gene 343:107–115

    Google Scholar 

  • Carrillo-Munoz AJ, Quindos G, Tur C, Ruesga M, Alonso R, Valle O de, Rodriguez V, Arevalo MP, Salgado J, Martin-Mazuelos E, Bornay-Llinares FJ, Palacio A del, Cuetara M, Gasser I, Hernandez-Molina JM, Peman J (2000) Comparative in vitro antifungal activity of amphotericin B lipid complex, amphotericin B and fluconazole. Chemotherapy 46:235–244

    Google Scholar 

  • Chopra R, Blair S, Strang J, Cervi P, Patterson K, Goldstone A (1991) Liposomal amphotericin B (Ambisome) in the treatment of fungal infections in neutropenic patients. J Antimicrob Agents 28:93–108

    Google Scholar 

  • Clemons KV, Stevens DA (2004) Comparative efficacies of four amphotericin B formulations—Fungizone, amphotec (Amphocil), AmBisome, and Abelcet—against systemic murine aspergillosis. Antimicrob Agents Chemother 48:1047–1050

    Google Scholar 

  • Davidson RN, Martino L di, Gradoni L, Giacchino R, Gaeta GB, Pempinello R, Scotti S, Cascio A, Castagnola E, Maiso A, Gramiccia M, Caprio D di, Wilkinson RJ, Bryceson AD (1996) Short-course treatment of visceral leishmaniasis with liposomal amphotericin B (AmBisome). Clin Infect Dis 22:938–943

    Google Scholar 

  • Desjeux P, Alvar J (2003) Leishmania/HIV co-infections: epidemiology in Europe. Ann Trop Med Parasitol 97[Suppl 1]:3–15

    Google Scholar 

  • Dignani MC, Anaissie E (2004) Human fusariosis. Clin Microbiol Infect 10[Suppl 1]:67–75

    Google Scholar 

  • Dutcher JD, Gold W, Pagano JF, Vandepatte J (1959) Amphotericin B, its production and its salts. US patent 2,908,611

  • Ellis D (2002) Amphotericin B: spectrum and resistance. J Antimicrob Chemother 49[Suppl 1]:7–10

    Google Scholar 

  • Eriksson U, Seifert B, Schaffner A (2001) Comparison of effects of amphotericin B deoxycholate infused over 4 or 24 h: randomised controlled trial. Br Med J 322:579–582

    Google Scholar 

  • Erjavec Z, Woolthuis GM, Vries-Hospers HG de, Sluiter WJ, Daenen SM, Pauw B de, Halie MR (1997) Tolerance and efficacy of amphotericin B inhalations for prevention of invasive pulmonary aspergillosis in haematological patients. Eur J Clin Microbiol Infect Dis 16:364–368

    Google Scholar 

  • Gallagher JC, Dodds Ashley ES, Drew RH, Perfect JR (2003) Antifungal pharmacotherapy for invasive mould infections Expert Opin Pharmacother 4:147–164

    Google Scholar 

  • Garcia A, Adler-Moore JP, Proffitt RT (2000) Single-dose AmBisome (liposomal amphotericin B) as prophylaxis for murine systemic candidiasis and histoplasmosis. Antimicrob Agents Chemother 44:2327–2332

    Google Scholar 

  • Gates C, Pinney R (1993) Amphotericin B and its delivery by liposomal and lipid formulations. J Clin Pharmacy Ther 18:147–153

    Google Scholar 

  • Gergel D, Ondrias K (1993) Incorporation of amphotericin B (Fungizone) in rat brain total lipid liposomes markedly decreases its i.v. toxicity in mice. Pharmazie 48:202–205

    Google Scholar 

  • Gref R, Luck M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, Muller RH (2000) ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 18:301–313

    Google Scholar 

  • Hamilton-Miller JM (1974) Fungal sterols and the mode of action of the polyene antibiotics. Adv Appl Microbiol 17:109–134

    Google Scholar 

  • Heit MC, Riviere JE (1995) Inaifungal and antiviral drugs. In: Adams HR (ed) Veterinary pharmycology and therapeutics, vol 7. Iowa State University, Ames, pp 855–884

    Google Scholar 

  • Herbrecht R, Natarajan-Ame S, Nivoix Y, Letscher-Bru V (2003) The lipid formulations of amphotericin B. Expert Opin Pharmacother 4:1277–1287

    Google Scholar 

  • Hertenstein B, Kern WV, Schmeiser T, Stefanic M, Bunjes D, Wiesneth M, Novotny J, Heimpel H, Arnold R (1994) Low incidence of invasive fungal infections after bone marrow transplantation in patients receiving amphotericin B inhalations during neutropenia. Ann Hematol 68:21–26

    Google Scholar 

  • Hoffman HL, Pfaller MA (2001) In vitro antifungal susceptibility testing. Pharmacotherapy 21:111S–123S

    Google Scholar 

  • Idemyor V (2003) Emerging opportunistic fungal infections: where are we heading? J Natl Med Assoc 95:1211–1215

    Google Scholar 

  • Just-Nubling G (1994) Therapy of candidiasis and cryptococcosis in AIDS. Mycoses 37[Suppl 2]:56–63

    Google Scholar 

  • Karyotakis NC, Anaissie EJ (1994) Efficacy of escalating doses of liposomal amphotericin B (AmBisome) against hematogenous Candida lusitaniae and Candida krusei infection in neutropenic mice. Antimicrob Agents Chemother 38:2660–2662

    Google Scholar 

  • Kayser O (2003) Nanosuspensionen als neue Arzneiform zur Therapie protozoischer Infektionen. Frieling, Berlin

    Google Scholar 

  • Kayser O, Kiderlen AF, Gelderblom H (2001) Aufnahme von Wirkstoff-Nanopartikeln in Leishmania donovani-infizierten Makrophagen. Dtsch Apotheker Z 141:1836–1838

    Google Scholar 

  • Kayser O, Olbrich C, Yardley V, Kiderlen AQF, Croft SL (2003) Formulation of amphotericin B as nanosuspension for oral administration. Int J Pharm 254:73–75

    Google Scholar 

  • Kelly SL, Lamb DC, Kelly DE, Loeffler J, Hebart H, Schumacher U, Einsele H (1997) Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol delta5,6-desaturation. FEBS Lett 400:80–82

    Google Scholar 

  • Kretschmar M, Amselem S, Zawoznik E, Mosbach K, Dietz A, Hof H, Nichterlein T (2001) Efficient treatment of murine systemic infection with Candida albicans using amphotericin B incorporated in nanosize range particles (emulsomes). Mycoses 44:281–286

    Google Scholar 

  • Kroker R (1999) Pharmaka zur Behandlung von Pilzinfektionen. In: Löscher W, Ungemach F, Kroker R (eds) Pharmakotherapie bei Haus und Nutztieren. Parey, Berlin, pp 290–294

    Google Scholar 

  • Lambros M, Bourne D, Abbas S, Johnson D (1997) Disposition of aerolized liposomal amphotericin B. J Pharm Sci 86:1066–1069

    Google Scholar 

  • Lamothe J (2001) Activity of amphotericin B in lipid emulsion in the initial treatment of canine leishmaniasis. J Small Anim Pract 42:170–175

    Google Scholar 

  • Linke HAB, Mechlinski W, Schaffner CP (1974) Production of amphotericin B-14C by Streptomyces nodosus fermentation, and preparation of the amphotericin B-14C-methyl-ester. J Antibiot 27:155–160

    CAS  PubMed  Google Scholar 

  • Liu YT (1984) Biosynthetic studies of amphotericins, candicidin and nystatin by means of mutation. Proc Natl Sci Counc Repub China B 8:182–186

    Google Scholar 

  • Lopez-Velez R, Videla S, Marquez M, Boix V, Jimenez-Mejias ME, Gorgolas M, Arribas JR, Salas A, Laguna F, Sust M, Canavate C, Alvar J, Spanish HIV-Leishmania Study Group (2004) Amphotericin B lipid complex versus no treatment in the secondary prophylaxis of visceral leishmaniasis in HIV-infected patients. J Antimicrob Chemother 53:540–543

    Google Scholar 

  • Luke RG, Boyle JA (1998) Renal effects of amphotericin B lipid complex. Am J Kidney Dis 31:780–785

    Google Scholar 

  • Mbongo N, Loiseau PM, Billion MA, Robert-Gero M (1998) Mechanism of amphotericin B resistance in Leishmania donovani promastigotes. Antimicrob Agents Chemother 42:352–357

    Google Scholar 

  • McGarvey GJ, Mathys JA, Wilson KJ (1996) Synthesis of amphotericin B: a convergent strategy to the polyol segment of the heptaene macrolide antibiotics. J Org Chem 61:5704–5705

    Google Scholar 

  • McNamara CM, Box S, Crawforth JM, Hickman BS, Norwood TJ, Rawlings BJ (1998) Biosynthesis of amphotericin B. J Chem Soc Perkin Trans 1:83–87

    Google Scholar 

  • Meunier F, Prentice HG, Ringden O (1991) Liposomal amphotericin B (AmBisome): safety data from a phase II/III clinical trial. J Antimicrob Chemother 28[Suppl B]:83–91

    Google Scholar 

  • Milhaud J, Ponsinet V, Takashi M, Michels B (2002) Interactions of the drug amphotericin b with phospholipid membranes containing or not ergosterol: new insights into the role of ergosterol. Biochim Biophys Acta 1558:95–108

    Google Scholar 

  • Monji N, Mechlinski W, Shaffner CP (1976) Microbial production of amphotericin B-3H and the synthesis of its sodium desoxycholate (carboxyl-14C) complex and methyl-14C-ester. J Antibiot 29:438–443

    Google Scholar 

  • Montoro J, Sune-Martin M, Oliveras-Martin J (2001) Comparative pharmacokinetics of amphotericin B in its different formulations: the result of a meta-analysis. Eur Hosp Pharm 7:1–8

    Google Scholar 

  • Moribe K, Maruyama K (2002) Pharmaceutical design of the liposomal antimicrobial agents for infectious disease. Curr Pharm Des 8:441–454

    Google Scholar 

  • Morschhäuser J (2003) Resistenzen und Resistenzmechanismen. Pharm Unserer Zeit 32:124–128

    Google Scholar 

  • Mullen AB, Carter KC, Baillie (1997) Comparison of the efficacies of various formulations of amphotericin B against murine visceral leishmaniasis. Antimicrob Agents Chemother 41:2089–2092

    Google Scholar 

  • Müller R (1991) Colloidal carriers for controlled drug delivery and targeting. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  • Müller R (1997) Nanosuspensionen-eine neue Formulierung für schwerlösliche Arzneistoffe. In: Hildebrand G (ed) Pharmazeutische Technologie: Moderne Arzneiformen. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  • Müller R, Maassen S, Weyhers H, Mehnert W (1996) Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J Drug Target 4:161–170

    Google Scholar 

  • Müller R, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of art. Eur J Pharm Biopharm 50:161–177

    Google Scholar 

  • Müller RH, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv Drug Deliv Rev 47:3–19

    Google Scholar 

  • Müller RH, Radtke M, Wissing SA (2002) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54[Suppl 1]: S131–S155

    Google Scholar 

  • Nicolaou KC, Daines RA, Ogawa Y, Chakraborty TK (1988) Total synthesis of amphotericin B: 3 final stages. J Am Chem Soc 110:4696–4705

    Google Scholar 

  • Nikodinovic J, Barrow KD, Chuck J-A (2003) High frequency transformation of the amphotericin-producing bacterium Streptomyces nodosus. J Microbiol Methods 55:273–277

    Google Scholar 

  • Oliva G, Gradoni L, Ciaramella R, De Luna R, Cortese L, Orsini S, Davidson RN, Persechino A (1995) Activity of liposomal amphotericin B (AmBisome) in dogs naturally infected with Leishmania infantum. J Antimicrob Chemother 36:1013–1019

    Google Scholar 

  • O’Neil M, Lapointe M (1997) Administration of amphotericin B in lipid emulsion. Crit Care Med 25:892–893

    Google Scholar 

  • Ostrosky-Zeichner L, Marr KA, Rex JH, Cohen SH (2003) Amphotericin B: time for a new “gold standard”. Clin Infect Dis 37:415–425

    Google Scholar 

  • Oullette M, Drummelsmith J, Papadopoulou B (2004) Leishmaniasis: drugs in the clinics, resistances and new developments. Drug Resist Update 7:257–266

    Google Scholar 

  • Pahissa A (1997) Amphotericin B: lipid complex versus liposomes: which, why, when? Enferm Infecc Microbiol Clin 15:1–3

    Google Scholar 

  • Panosian CB, Barza M, Szoka F, Myler DJ (1984) Treatment of experimental cutaneous leishmaniasis with liposome-intercalated amphotericin B. Antimicrob Agents Chemother 25:655–656

    Google Scholar 

  • Papahadjopoulos D, Vail W, Jacobson K, Poste G (1975) Cochleate lipid cylinders: formation by fusion of unilamellar lipid vesicles. Biochim Biophys Acta 384:483–491

    Google Scholar 

  • Paquet MJ, Fournier I, Barwicz J, Tancrede P, Auger M (2002) The effects of amphotericin B on pure and ergosterol- or cholesterol-containing dipalmitoylphosphatidylcholine bilayers as viewed by 2H NMR. Chem Phys Lipids 119:1–11

    Google Scholar 

  • Paredes R, Munoz J, Diaz P, Domingo P, Gurgui M, Clodet B (2003) Leishmaniasis in HIV infection. J Postgrad Med 49:39–49

    Google Scholar 

  • Petit C, Yardley V, Gaboriau F, Bollard J, Croft SL (1999) Activity of a heat-induced reformulation of amphotericin B deoxycholate (fungizone) against Leishmania donovani. Antimicrob Agents Chemother 43:390–392

    Google Scholar 

  • Pfaller MA (2000) Antifungal susceptibility testing: progress and future developments. Braz J Infect Dis 4:55–60

    Google Scholar 

  • Pfaller MA, Yu WL (2001) Antifungal susceptibility testing: new technology and clinical applications. Infect Dis Clin N Am 15:1227–1261

    Google Scholar 

  • Plumb D (1999) Veterinary drug handbook. PharmaVet, White Bear Lake

    Google Scholar 

  • Ramos H, Brajtburg J, Marquez V, Cohen BE (1995) Comparison of the leishmanicidal activity of fungizone, liposomal AmB and amphotericin B incorporated into egg lecithin–bile salt mixed micelles. Drugs Exp Clin Res 21:211–216

    Google Scholar 

  • Ranchere JY, Latour JF, Fuhrmann C, Lagallarde C, Loreuil F (1996) Amphotericin B intralipid formulation: stability and particle size. J Antimicrob Chemother 37:1165–1169

    Google Scholar 

  • Robbie G, Chiou WL (1998) Elucidation of human amphotericin B pharmacokinetics: identification of a new potential factor affecting interspecies pharmacokinetic scaling. Pharm Res 15:1630–1636

    Google Scholar 

  • Santangelo R, Paderu P, Delmas G, Chen ZW, Mannico R, Zarif L, Perlin DS (2000) Efficacy of oral cochleate–amphotericin B in a mouse model of systemic candidiasis. Antimicrob Agents Chemother 44:2356–2360

    Google Scholar 

  • Sawaya BP, Briggs JP, Schnermann J (1995) Amphotericin B nephrotoxicity: the adverse consequences of altered membrane properties. J Am Soc Nephrol 6:154–164

    Google Scholar 

  • Schmitt S (2002) Parenterale O/W Emulsionen: Plasmaproteininteraktion und Interaktion von Arzneistoffen. PhD thesis, Freie Universität Berlin, Berlin

    Google Scholar 

  • Schöler N (2001) Feste Lipidnanopartikel (SLN) und Nanosuspensionen: In-vitro-Zytotoxizität und therapeutischer Einsatz am Modell der Reaktivierungstoxoplasmose der Maus. PhD thesis, Freie Universität Berlin, Berlin

    Google Scholar 

  • Schöler N, Krause K, Kayser O, Müller RH, Borner K, Hahn H, Liesenfeld O (2001) Atovaquone nanosuspensions show excellent therapeutic effect in a new murine model of reactivated toxoplasmosis. Antimicrob Agents Chemother 45:1771–1779

    Google Scholar 

  • Schwarz C, Mehnert W (1999) Solid lipid nanoparticles (SLN) for controlled drug delivery: II. Drug incorporation and physicochemical characterization. J Microencapsul 16:205–213

    Google Scholar 

  • Seggara I, Movshin D, Zarif L (2002) Pharmacokinetics and tissue distribution after intravenous administration of a single dose of amphotericin B cochleates, a new lipid based delivery system. J Pharm Sci 91:1827–1837

    Google Scholar 

  • Segovia M, Navarro A, Artero JM (1989) The effect of liposome-entrapped desferrioxamine on Leishmania donovani in vitro. Ann Trop Med Parasitol 83:357–360

    Google Scholar 

  • Seibold M, Tintelnot K (2003) Susceptibility testing of fungi—current status and open questions. Prog Drug Res [Spec No] 2003:191–241

    Google Scholar 

  • Sen N, Samanta A, Baidya S, Gupta B, Ghosh L (1998) Development of amphotericin B loaded nanoparticles. Boll Chim Farm 137:295–297

    Google Scholar 

  • Sievers TM, Kubak BM, Wong-Beringer A (1996) Safety and efficacy of intralipid emulsions of amphotericin B. J Antimicrob Chemother 38:333–347

    Google Scholar 

  • Sokol-Anderson ML, Brajtburg J, Medoff G (1986) Amphotericin B-induced oxidative damage and killing of Candida albicans. J Infect Dis 154:76–83

    Google Scholar 

  • Souza LC, Campa A (1999) Pharmacological parameters of intravenously administered amphotericin B in rats: comparison of the conventional formulation with amphotericin B associated with a triglyceride-rich emulsion. J Antimicrob Chemother 44:77–84

    Google Scholar 

  • National Committee for Clinical Laboratory Standards (1997) Reference method for broth dilution antifungal susceptibility testing of yeasts: approved standard M27-A. National Committee for Clinical Laboratory Standards, Wayne

    Google Scholar 

  • Stevens D (1994) Overview of amphotericin B colloidal dispersion (amphocil). J Infect 28[Suppl 1]:45–49

    Google Scholar 

  • Sundar S (2001) Liposomal amphotericin B. Lancet 357:801–802

    Google Scholar 

  • Tiyaboonchai W, Woiszwillo J, Middaugh CR (2001) Formulation and characterization of amphotericin B-polyethylenimine–dextran sulfate nanoparticles. J Pharm Sci 90:902–914

    Google Scholar 

  • Tomii Y (2002) Lipid formulation as a drug carrier for drug delivery. Curr Pharm Des 8:467–474

    Google Scholar 

  • Venier-Julienne MC, Benoit JP (1996) Preparation, purification and morphology of polymeric nanoparticles as drug carriers. Pharm Acta Helv 71:121–128

    Google Scholar 

  • Walsh TJ, Goodman JL, Pappas P, Bekersky I, Buell DN, Roden M, Barrett J, Anaissie EJ (2001) Safety, tolerance, and pharmacokinetics of high-dose liposomal amphotericin B (AmBisome) in patients infected with Aspergillus species and other filamentous fungi: maximum tolerated dose study. Antimicrob Agents Chemother 45:3487–3496

    Google Scholar 

  • Warn PA, Sharp A, Guinea J, Denning DW (2004) Effect of hypoxic conditions on in vitro susceptibility testing of amphotericin B, itraconazole and micafungin against Aspergillus and Candida. J Antimicrob Chemother 53:743–749

    Google Scholar 

  • Weldon JS, Munnell JF, Hanson WL, Alving CR (1983) Liposomal chemotherapy in visceral leishmaniasis: an ultrastructural study of an intracellular pathway. Z Parasitenkd 69:415–424

    Google Scholar 

  • Windholz M, Budavari S, Blumetti R, Otterbein E (1983) Amphothericin B. In: The Merck index. Merck, New York, p. 2194

  • Yardley V, Croft SL (2000) A comparison of the activities of three amphotericin B lipid formulations against experimental visceral and cutaneous leishmaniasis. Int J Antimicrob Agents 13:243–248

    Google Scholar 

  • Zager RA (2000) Polyene antibiotics: relative degrees of in vitro cytotoxicity and potential effects on tubule phospholipid and ceramide content. Am J Kidney Dis 36:238–249

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Kayser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemke, A., Kiderlen, A.F. & Kayser, O. Amphotericin B. Appl Microbiol Biotechnol 68, 151–162 (2005). https://doi.org/10.1007/s00253-005-1955-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-1955-9

Keywords

Navigation