Skip to main content

Isotope-Labeled Amyloids via Synthesis, Expression, and Chemical Ligation for Use in FTIR, 2D IR, and NMR Studies

  • Protocol
Protein Amyloid Aggregation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1345))

Abstract

This chapter provides protocols for isotope-labeling the human islet amyloid polypeptide (hIAPP or amylin) involved in type II diabetes and γD-crystallin involved in cataract formation. Because isotope labeling improves the structural resolution, these protocols are useful for experiments using Fourier transform infrared (FTIR), two-dimensional infrared (2D IR), and NMR spectroscopies. Our research group specializes in using 2D IR spectroscopy and isotope labeling. 2D IR spectroscopy provides structural information by measuring solvation from 2D diagonal lineshapes and vibrational couplings from cross peaks. Infrared spectroscopy can be used to study kinetics, membrane proteins, and aggregated proteins. Isotope labeling provides greater certainty in the spectral assignment, which enables new structural insights that are difficult to obtain with other methods. For amylin, we provide a protocol for 13C/18O labeling backbone carbonyls at one or more desired amino acids in order to obtain residue-specific structural resolution. We also provide a protocol for expressing and purifying amylin from E. coli, which enables uniform 13C or 13C/15N labeling. Uniform labeling is useful for measuring the monomer infrared spectrum in an amyloid oligomer or fiber as well as amyloid protein bound to another polypeptide or protein, such as a chaperone or an inhibitor. In addition, our expression protocol results in 2–2.5 mg of amylin peptide per 1 L cell culture, which is a high enough yield to straightforwardly obtain the 2–10 mg needed for high resolution and solid-state NMR experiments. Finally, we provide a protocol to isotope-label either of the two domains of γD-crystallin using expressed protein ligation. Domain labeling makes it possible to resolve the structures of the two halves of the protein in FTIR and 2D IR spectra. With modifications, these strategies and protocols for isotope labeling can be applied to other amyloid polypeptides and proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hahn S, Kim SS, Lee C, Cho M (2005) Characteristic two-dimensional IR spectroscopic features of antiparallel and parallel beta-sheet polypeptides: simulation studies. J Chem Phys 123:084905

    Article  PubMed  Google Scholar 

  2. Baiz CR, Peng CS, Reppert ME, Jones KC, Tokmakoff A (2012) Coherent two-dimensional infrared spectroscopy: quantitative analysis of protein secondary structure in solution. Analyst (Cambridge, U K) 137:1793–1799

    Article  CAS  Google Scholar 

  3. Strasfeld DB, Ling YL, Shim S-H, Zanni MT (2008) Tracking fiber formation in human islet amyloid polypeptide with automated 2D-IR spectroscopy. J Am Chem Soc 130:6698–6699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Cheng-Yen Huang ZG, Wang T, DeGrado WF, Gai F (2001) Time-Resolved Infrared Study of the helix-coil transition using 13C-labeled helical peptides. J Am Chem Soc 123:12111–12112

    Article  Google Scholar 

  5. Brewer SH, Song B, Raleigh DP, Dyer RB (2007) Residue specific resolution of protein folding dynamics using isotope-edited infrared temperature jump spectroscopy†. Biochemistry 46:3279–3285

    Article  CAS  PubMed  Google Scholar 

  6. Decatur SM, Antonic J (1999) Isotope-edited infrared spectroscopy of helical peptides. J Am Chem Soc 121:11914–11915

    Article  CAS  Google Scholar 

  7. Sean D, Moran AMW, Buchanan LE, Bixby E, Zanni MT (2012) Two-dimensional IR spectroscopy and segmental 13C labeling reveals the domain structure of human γD-crystallin amyloid fibrils. Proc Natl Acad Sci U S A 109:3329–3334

    Article  Google Scholar 

  8. Woys AM, Almeida AM, Wang L, Chiu CC, McGovern M et al (2012) Parallel beta-sheet vibrational couplings revealed by 2D IR spectroscopy of an isotopically labeled macrocycle: quantitative benchmark for the interpretation of amyloid and protein infrared spectra. J Am Chem Soc 134:19118–19128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hamm P, Zanni M (2011) Concepts and methods of 2D infrared spectroscopy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  10. Shim SH, Gupta R, Ling YL, Strasfeld DB, Raleigh DP, Zanni MT (2009) Two-dimensional IR spectroscopy and isotope labeling defines the pathway of amyloid formation with residue-specific resolution. Proc Natl Acad Sci U S A 106:6614–6619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Falvo C, Zhuang W, Kim YS, Axelsen PH, Hochstrasser RM, Mukamel S (2012) Frequency distribution of the amide-I vibration sorted by residues in amyloid fibrils revealed by 2D-IR measurements and simulations. J Phys Chem B 116:3322–3330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Remorino A, Korendovych IV, Wu Y, DeGrado WF, Hochstrasser RM (2011) Residue-specific vibrational echoes yield 3D structures of a transmembrane helix dimer. Science 332:1206–1209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Buchanan LE, Dunkelberger EB, Tran HQ, Cheng PN, Chiu CC et al (2013) Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient beta-sheet. Proc Natl Acad Sci U S A 110:19285–19290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Buchanan LE, Carr JK, Fluitt AM, Hoganson AJ, Moran SD et al (2014) Structural motif of polyglutamine amyloid fibrils discerned with mixed-isotope infrared spectroscopy. Proc Natl Acad Sci U S A 111:5796–5801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Pentelute BL, Kent SBH (2006) Selective desulfurization of cysteine in the presence of Cys(Acm) in polypeptides obtained by native chemical ligation. Org Lett 9:687–690

    Article  Google Scholar 

  16. Devaraneni PK, Komarov AG, Costantino CA, Devereaux JJ, Matulef K, Valiyaveetil FI (2013) Semisynthetic K+ channels show that the constricted conformation of the selectivity filter is not the C-type inactivated state. Proc Natl Acad Sci U S A 110:15698–15703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Flavell RR, Muir TW (2009) Expressed protein ligation (EPL) in the study of signal transduction, ion conduction, and chromatin biology. Acc Chem Res 42:107–116

    Article  CAS  PubMed  Google Scholar 

  18. Moran SD, Decatur SM, Zanni MT (2012) Structural and sequence analysis of the human gammaD-crystallin amyloid fibril core using 2D IR spectroscopy, segmental 13C labeling, and mass spectrometry. J Am Chem Soc 134:18410–18416

    Article  CAS  PubMed  Google Scholar 

  19. Seyfried MS, Lauber BS, Luedtke NW (2010) MultipleTurnover isotopic labeling of Fmoc- and Boc-protected amino acids with oxygen isotopes. Org Lett 12:104–106

    Article  CAS  PubMed  Google Scholar 

  20. Middleton CT, Woys AM, Mukherjee SS, Zanni MT (2010) Residue-specific structural kinetics of proteins through the union of isotope labeling, mid-IR pulse shaping, and coherent 2D IR spectroscopy. Methods 52:12–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lopes DH, Colin C, Degaki TL, de Sousa AC, Vieira MN et al (2004) Amyloidogenicity and cytotoxicity of recombinant mature human islet amyloid polypeptide (rhIAPP). J Biol Chem 279:42803–42810

    Article  CAS  PubMed  Google Scholar 

  22. Mazor Y, Gilead S, Benhar I, Gazit E (2002) Identification and characterization of a novel molecular-recognition and self-assembly domain within the islet amyloid polypeptide. J Mol Biol 322:1013–1024

    Article  CAS  PubMed  Google Scholar 

  23. Kosicka I, Kristensen T, Bjerring M, Thomsen K, Scavenius C et al (2014) Preparation of uniformly (13)C, (15)N-labeled recombinant human amylin for solid-state NMR investigation. Protein Expr Purif 99:119–130

    Article  CAS  PubMed  Google Scholar 

  24. Williamson JA, Miranker AD (2007) Direct detection of transient alpha-helical states in islet amyloid polypeptide. Protein Sci 16:110–117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Moran SD, Zanni MT (2014) How to get insight into amyloid structure and formation from infrared spectroscopy. J Phys Chem Lett 5:1984–1993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. King JT, Kubarych KJ (2012) Site-specific coupling of hydration water and protein flexibility studied in solution with ultrafast 2D-IR spectroscopy. J Am Chem Soc 134:18705–18712

    Article  CAS  PubMed  Google Scholar 

  27. Chung HS, Khalil M, Smith AW, Tokmakoff A (2007) Transient two-dimensional IR spectrometer for probing nanosecond temperature-jump kinetics. Rev Sci Instrum 78:063101

    Article  PubMed  Google Scholar 

  28. Ihalainen JA, Bredenbeck J, Pfister R, Helbing J, Chi L et al (2007) Folding and unfolding of a photoswitchable peptide from picoseconds to microseconds. Proc Natl Acad Sci U S A 104:5383–5388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Ghosh A, Wang J, Moroz YS, Korendovych IV, Zanni M et al (2014) 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel. J Chem Phys 140:235105

    Article  PubMed Central  PubMed  Google Scholar 

  30. Manor J, Mukherjee P, Lin YS, Leonov H, Skinner JL et al (2009) Gating mechanism of the influenza A M2 channel revealed by 1D and 2D IR spectroscopies. Structure 17:247–254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Jansson M, Li YC, Anderson S, Montelione G, Nilsson B (1996) High-level production of uniformly 15N-and 13C-enriched fusion proteins in Escherichia coli. J Biomol NMR 7:131–141

    Article  CAS  PubMed  Google Scholar 

  32. Abedini A, Raleigh DP (2005) Incorporation of pseudoproline derivatives allows the facile synthesis of human IAPP, a highly amyloidogenic and aggregation-prone polypeptide. Org Lett 7:693–696

    Article  CAS  PubMed  Google Scholar 

  33. Dunkelberger EB, Buchanan LE, Marek P, Cao P, Raleigh DP, Zanni MT (2012) Deamidation accelerates amyloid formation and alters amylin fiber structure. J Am Chem Soc 134:12658–12667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Marek PJ, Patsalo V, Green DF, Raleigh DP (2012) Ionic strength effects on amyloid formation by amylin are a complicated interplay among Debye screening, ion selectivity, and Hofmeister effects. Biochemistry 51:8478–8490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank NIH NIDDK DK79895 for supporting this work.

Statement: Martin Zanni is a cofounder of PhaseTech Spectroscopy, Inc. which manufactures 2D IR spectrometers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin T. Zanni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhang, T.O., Grechko, M., Moran, S.D., Zanni, M.T. (2016). Isotope-Labeled Amyloids via Synthesis, Expression, and Chemical Ligation for Use in FTIR, 2D IR, and NMR Studies. In: Eliezer, D. (eds) Protein Amyloid Aggregation. Methods in Molecular Biology, vol 1345. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2978-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2978-8_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2977-1

  • Online ISBN: 978-1-4939-2978-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics