Skip to main content

Electrophoretic Mobility Shift Assay of DNA and CRISPR-Cas Ribonucleoprotein Complexes

  • Protocol
CRISPR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1311))

Abstract

The Electrophoretic Mobility Shift Assay is a straightforward and inexpensive method for the determination and quantification of protein–nucleic acid interactions. It relies on the different mobility of free and protein-bound nucleic acid in a gel matrix during electrophoresis. Nucleic acid affinities of crRNA-Cas complexes can be quantified by calculating the dissociation constant (K d). Here, we describe how two types of EMSA assays are performed using the Cascade ribonucleoprotein complex from Escherichia coli as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Westra ER et al (2012) The CRISPRs, they are a-Changin': how prokaryotes generate adaptive immunity. Annu Rev Genet 46:311–339

    Article  CAS  PubMed  Google Scholar 

  2. Hale CR et al (2009) RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139:945–956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Jinek M et al (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  4. Semenova E et al (2011) Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci 108:10098–10103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Helwa R, Hoheisel J (2010) Analysis of DNA–protein interactions: from nitrocellulose filter binding assays to microarray studies. Anal Bioanal Chem 398:2551–2561

    Article  CAS  PubMed  Google Scholar 

  6. Jerabek-Willemsen M et al (2011) Molecular interaction studies using microscale thermophoresis. Assay Drug Dev Technol 9:342–353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Monico C et al (2013) Optical methods to study protein-DNA interactions in vitro and in living cells at the single-molecule level. Int J Mol Sci 14:3961–3992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Fried MG (1989) Measurement of protein‐DNA interaction parameters by electrophoresis mobility shift assay. Electrophoresis 10:366–376

    Article  CAS  PubMed  Google Scholar 

  9. Fried MG, Daugherty MA (1998) Electrophoretic analysis of multiple protein‐DNA interactions. Electrophoresis 19:1247–1253

    Article  CAS  PubMed  Google Scholar 

  10. Jore MM et al (2011) Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol 18:529–536

    Article  CAS  PubMed  Google Scholar 

  11. Westra ER et al (2010) H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. Mol Microbiol 77:1380–1393

    Article  CAS  PubMed  Google Scholar 

  12. Westra ER et al (2012) CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol Cell 46:595–605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Cann JR (1989) Phenomenological theory of gel electrophoresis of protein-nucleic acid complexes. J Biol Chem 264:17032–17040

    CAS  PubMed  Google Scholar 

  14. Fried MG, Bromberg JL (1997) Factors that affect the stability of protein‐DNA complexes during gel electrophoresis. Electrophoresis 18:6–11

    Article  CAS  PubMed  Google Scholar 

  15. Westra ER et al (2012) Cascade-mediated binding and bending of negatively supercoiled DNA. RNA Biol 9:1134–1138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Brody JR, Kern SE (2004) Sodium boric acid: a Tris-free, cooler conductive medium for DNA electrophoresis. Biotechniques 36:214–217

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a KNAW Beijerinck premium and NWO Vidi grant to S.J.J.B. (864.11.005). ERW received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n0 (327606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stan J. J. Brouns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Künne, T., Westra, E.R., Brouns, S.J.J. (2015). Electrophoretic Mobility Shift Assay of DNA and CRISPR-Cas Ribonucleoprotein Complexes. In: Lundgren, M., Charpentier, E., Fineran, P. (eds) CRISPR. Methods in Molecular Biology, vol 1311. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2687-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2687-9_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2686-2

  • Online ISBN: 978-1-4939-2687-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics