Skip to main content
Log in

Analysis of DNA–protein interactions: from nitrocellulose filter binding assays to microarray studies

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Determination of the sequence of the human genome and knowledge of the genetic code have allowed rapid progress in the identification of mammalian proteins. However, far less is known about the molecular mechanisms that control expression of human genes and about the variations in gene expression that underlie many pathological states, including cancer. This is caused in part by lack of information about the binding specificities of DNA-binding proteins and particularly regulative important molecules such as transcription factors. It is consequently crucial to develop new technologies or improve existing ones for the analysis of DNA–protein interaction in order to identify and characterise DNA response elements and the related transcription factors or other DNA-binding proteins. The techniques that are currently available vary with respect to the type of result that can be expected from the assay: a mere qualitative demonstration of binding; the identification of response element sequences at high throughput; or a quantitative characterisation of affinities. This article gives an overview of early and recent methodologies applied to such ends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bain G, Maandag EC, Izon DJ, Amsen D, Kruisbeek AM, Weintraub BC, Krop I, Schlissel MS, Feeney AJ, van Roon M, Vandervalk M, Teriele HPJ, Berns A, Murre C (1994) E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79:885–892

    Article  CAS  Google Scholar 

  2. Dynlacht BD (1997) Regulation of transcription by proteins that control the cell cycle. Nature 389:149–152

    Article  CAS  Google Scholar 

  3. Accili D, Arden KC (2004) FoxOs at the crossroads of cellular metabolism differentiation and transformation. Cell 117:421–426

    Article  CAS  Google Scholar 

  4. Lemon B, Tjian R (2000) Orchestrated response: a symphony of transcription factors for gene control. Genes Dev 14:2551–2569

    Article  CAS  Google Scholar 

  5. Furney SJ, Higgins DG, Ouzounis CA, Lopez-Bigas N (2006) Structural and functional properties of genes involved in human cancer. BMC Genomics 7:3

    Article  Google Scholar 

  6. Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson CR, Hariharan IK, Fortini ME, Li PW, Apweiler R, Fleischmann W, Cherry JM, Henikoff S, Skupski MP, Misra S, Ashburner M, Birney E, Boguski MS, Brody T, Brokstein P, Celniker SE, Chervitz SA, Coates D, Cravchik A, Gabrielian A, Galle RF, Gelbart WM, George RA, Goldstein LSB, Gong FC, Guan P, Harris NL, Hay BA, Hoskins RA, Li JY, Li ZY, Hynes RO, Jones SJM, Kuehl PM, Lemaitre B, Littleton JT, Morrison DK, Mungall C, O'Farrell PH, Pickeral OK, Shue C, Vosshall LB, Zhang J, Zhao Q, Zheng XQH, Zhong F, Zhong WY, Gibbs R, Venter JC, Adams MD, Lewis S (2000) Comparative genomics of the eukaryotes. Science 287:2204–2215

    Article  CAS  Google Scholar 

  7. Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241–254

    Article  CAS  Google Scholar 

  8. Cliften P, Sudarsanam P, Desikan A, Fulton L, Fulton B, Majors J, Waterston R, Cohen BA, Johnston M (2003) Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301:71–76

    Article  CAS  Google Scholar 

  9. Hughes JR, Cheng JF, Ventress N, Prabhakar S, Clark K, Anguita E, De Gobbi M, de Jong P, Rubin E, Higgs DR (2005) Annotation of cis-regulatory elements by identification subclassification and functional assessment of multispecies conserved sequences. Proc Natl Acad Sci U S A 102:9830–9835

    Article  CAS  Google Scholar 

  10. Venkatesh B, Yap WH (2005) Comparative genomics using fugu: a tool for the identification of conserved vertebrate cis-regulatory elements. Bioessays 27:100–107

    Article  CAS  Google Scholar 

  11. Cliften PF, Hillier LW, Fulton L, Graves T, Miner T, Gish WR, Waterston RH, Johnston M (2001) Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis. Genome Res 11:1175–1186

    Article  CAS  Google Scholar 

  12. Messina DN, Glasscock J, Gish W, Lovett M (2004) An ORFeome-based analysis of human transcription factor genes and the construction of a microarray to interrogate their expression. Genome Res 14:2041–2047

    Article  CAS  Google Scholar 

  13. Hu S, Xie Z, Onishi A, Yu X, Jiang L, Lin J, Rho HS, Woodard C, Wang H, Jeong JS, Long SY, He XF, Wade H, Blackshaw S, Qian J, Zhu H (2009) Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell 139:610–622

    Article  CAS  Google Scholar 

  14. Riggs AD, Bourgeois S, Newby RF, Cohn M (1968) DNA binding of the lac repressor. J Mol Biol 34:365–368

    Article  CAS  Google Scholar 

  15. Riggs AD, Bourgeois S, Cohn M (1970) The lac repressor-operator interaction. 3. Kinetic studies. J Mol Biol 53:401–417

    Article  CAS  Google Scholar 

  16. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  CAS  Google Scholar 

  17. Woodbury CP Jr, von Hippel PH (1983) On the determination of deoxyribonucleic acid-protein interaction parameters using the nitrocellulose filter-binding assay. Biochemistry 22:4730–4737

    Article  CAS  Google Scholar 

  18. Beattie KL, Wiegand RC, Radding CM (1977) Uptake of homologous single-stranded fragments by superhelical DNA. II. Characterization of the reaction. J Mol Biol 116:783–803

    Article  CAS  Google Scholar 

  19. Tullius TD (1989) Physical studies of protein-DNA complexes by footprinting. Annu Rev Biophys Biophys Chem 18:213–237

    Article  CAS  Google Scholar 

  20. Galas DJ, Schmitz A (1978) DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res 5:3157–3170

    Article  CAS  Google Scholar 

  21. Brenowitz M, Senear DF, Shea MA, Ackers GK (1986) Quantitative DNase footprint titration: a method for studying protein-DNA interactions. Methods Enzymol 130:132–181

    Article  CAS  Google Scholar 

  22. Maxam AM, Gilbert W (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 65:499–560

    Article  CAS  Google Scholar 

  23. Siebenlist U, Gilbert W (1980) Contacts between Escherichia coli RNA polymerase and an early promoter of phage T7. Proc Natl Acad Sci U S A 77:122–126

    Article  CAS  Google Scholar 

  24. Yang VW (1998) Eukaryotic transcription factors: identification characterization and functions. J Nutr 128:2045–2051

    CAS  Google Scholar 

  25. Fried M, Crothers DM (1981) Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res 9:6505–6525

    Article  CAS  Google Scholar 

  26. Garner MM, Revzin A (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 9:3047–3060

    Article  CAS  Google Scholar 

  27. Carey J (1991) Gel retardation. Methods Enzymol 208:103–117

    Article  CAS  Google Scholar 

  28. Hellman LM, Fried MG (2007) Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc 2:1849–1861

    Article  CAS  Google Scholar 

  29. Fried MG, Bromberg JL (1997) Factors that affect the stability of protein-DNA complexes during gel electrophoresis. Electrophoresis 18:6–11

    Article  CAS  Google Scholar 

  30. Massie CE, Mills IG (2008) ChIPping away at gene regulation. EMBO Rep 9:337–343

    Article  CAS  Google Scholar 

  31. Hoffman BG, Jones SJ (2009) Genome-wide identification of DNA-protein interactions using chromatin immunoprecipitation coupled with flow cell sequencing. J Endocrinol 201:1–13

    Article  CAS  Google Scholar 

  32. Wu J, Smith LT, Plass C, Huang TH (2006) ChIP-chip comes of age for genome-wide functional analysis. Cancer Res 66:6899–6902

    Article  CAS  Google Scholar 

  33. Mardis ER (2007) ChIP-seq: welcome to the new frontier. Nat Methods 4:613–614

    Article  CAS  Google Scholar 

  34. Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, Jennings EG, Zeitlinger J, Pokholok DK, Kellis M, Rolfe PA, Takusagawa KT, Lander ES, Gifford DK, Fraenkel E, Young RA (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431:99–104

    Article  CAS  Google Scholar 

  35. Vogel MJ, Peric-Hupkes D, van Steensel B (2007) Detection of in vivo protein-DNA interactions using DamID in mammalian cells. Nat Protoc 2:1467–1478

    Article  CAS  Google Scholar 

  36. Lee TI, Johnstone SE, Young RA (2006) Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protoc 1:729–748

    Article  CAS  Google Scholar 

  37. Johne B, Gadnell M, Hansen K (1993) Epitope mapping and binding kinetics of monoclonal antibodies studied by real time biospecific interaction analysis using surface plasmon resonance. J Immunol Methods 160:191–198

    Article  CAS  Google Scholar 

  38. Buckle M, Williams RM, Negroni M, Buc H (1996) Real time measurements of elongation by a reverse transcriptase using surface plasmon resonance. Proc Natl Acad Sci U S A 93:889–894

    Article  CAS  Google Scholar 

  39. Rich RL, Myszka DG (2006) Survey of the year 2005 commercial optical biosensor literature. J Mol Recognit 19:478–534

    Article  CAS  Google Scholar 

  40. Oliphant AR, Brandl CJ, Struhl K (1989) Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: analysis of yeast GCN4 protein. Mol Cell Biol 9:2944–2949

    CAS  Google Scholar 

  41. Roulet E, Busso S, Camargo AA, Simpson AJ, Mermod N, Bucher P (2002) High-throughput SELEX SAGE method for quantitative modeling of transcription-factor binding sites. Nat Biotechnol 20:831–835

    CAS  Google Scholar 

  42. Deplancke B, Dupuy D, Vidal M, Walhout AJ (2004) A gateway-compatible yeast one-hybrid system. Genome Res 14:2093–2101

    Article  CAS  Google Scholar 

  43. Deplancke B, Mukhopadhyay A, Ao W, Elewa AM, Grove CA, Martinez NJ, Sequerra R, Doucette-Stamm L, Reece-Hoyes JS, Hope IA, Tissenbaum HA, Mango SE, Walhout AJM (2006) A gene-centered C elegans protein-DNA interaction network. Cell 125:1193–1205

    Article  CAS  Google Scholar 

  44. Noyes MB, Christensen RG, Wakabayashi A, Stormo GD, Brodsky MH, Wolfe SA (2008) Analysis of homeodomain specificities allows the family-wide prediction of preferred recognition sites. Cell 133:1277–1289

    Article  CAS  Google Scholar 

  45. Bulyk ML (2006) DNA microarray technologies for measuring protein-DNA interactions. Curr Opin Biotechnol 17:422–430

    Article  CAS  Google Scholar 

  46. Bulyk ML, Gentalen E, Lockhart DJ, Church GM (1999) Quantifying DNA-protein interactions by double-stranded DNA arrays. Nat Biotechnol 17:573–577

    Article  CAS  Google Scholar 

  47. Beier M, Stephan A, Hoheisel JD (2001) Synthesis of photolabile 5′-O-phosphoramidites for the production of microarrays of inversely oriented oligonucleotides. Helv Chim Acta 84:2089–2095

    Article  CAS  Google Scholar 

  48. Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E, Volkert TL, Wilson CJ, Bell SP, Young RA (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309

    Article  CAS  Google Scholar 

  49. Lieb JD, Liu X, Botstein D, Brown PO (2001) Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat Genet 28:327–334

    Article  CAS  Google Scholar 

  50. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804

    Article  CAS  Google Scholar 

  51. Berger MF, Bulyk ML (2006) Protein binding microarrays (PBMs) for rapid high-throughput characterization of the sequence specificities of DNA binding proteins. Methods Mol Biol 338:245–260

    CAS  Google Scholar 

  52. Mukherjee S, Berger MF, Jona G, Wang XS, Muzzey D, Snyder M, Young RA, Bulyk ML (2004) Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nat Genet 36:1331–1339

    Article  CAS  Google Scholar 

  53. Berger MF, Badis G, Gehrke AR, Talukder S, Philippakis AA, Pena-Castillo L, Alleyne TM, Mnaimneh S, Botvinnik OB, Chan ET, Khalid F, Zhang W, Newburger D, Jaeger SA, Morris QD, Bulyk ML, Hughes TR (2008) Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences. Cell 133:1266–1276

    Article  CAS  Google Scholar 

  54. Warren CL, Kratochvil NC, Hauschild KE, Foister S, Brezinski ML, Dervan PB, Phillips GN Jr, Ansari AZ (2006) Defining the sequence-recognition profile of DNA-binding molecules. Proc Natl Acad Sci U S A 103:867–872

    Article  CAS  Google Scholar 

  55. Berger MF, Bulyk ML (2009) Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors. Nat Protoc 4:393–411

    Article  CAS  Google Scholar 

  56. Ho SW, Jona G, Chen CT, Johnston M, Snyder M (2006) Linking DNA-binding proteins to their recognition sequences by using protein microarrays. Proc Natl Acad Sci U S A 103:9940–9945

    Article  CAS  Google Scholar 

  57. Gong W, He K, Covington M, Dinesh-Kumar SP, Snyder M, Harmer SL, Zhu YX, Deng XW (2008) The development of protein microarrays and their applications in DNA-protein and protein-protein interaction analyses of Arabidopsis transcription factors. Mol Plant 1:27–41

    Article  CAS  Google Scholar 

  58. He M, Taussig MJ (2001) Single step generation of protein arrays from DNA by cell-free expression and in situ immobilisation (PISA method). Nucleic Acids Res 29:E73

    Article  CAS  Google Scholar 

  59. Ramachandran N, Hainsworth E, Bhullar B, Eisenstein S, Rosen B, Lau AY, Walter JC, LaBaer J (2004) Self-assembling protein microarrays. Science 305:86–90

    Article  CAS  Google Scholar 

  60. Angenendt P, Kreutzberger J, Glokler J, Hoheisel JD (2006) Generation of high density protein microarrays by cell-free in situ expression of unpurified PCR products. Mol Cell Proteomics 5:1658–1666

    Article  CAS  Google Scholar 

  61. Gustafsdottir SM, Schlingemann J, Rada-Iglesias A, Schallmeiner E, Kamali-Moghaddam M, Wadelius C, Landegren U (2007) In vitro analysis of DNA-protein interactions by proximity ligation. Proc Natl Acad Sci U S A 104:3067–3072

    Article  CAS  Google Scholar 

  62. Conze T, Shetye A, Tanaka Y, Gu JJ, Larsson C, Goeransson J, Tavoosidana G, Soederberg O, Nilsson M, Landegren U (2009) Analysis of genes, transcripts, and proteins via DNA ligation. Ann Rev Anal Chem 2:215–239

    Article  CAS  Google Scholar 

  63. Bustamante C, Rivetti C (1996) Visualizing protein-nucleic acid interactions on a large scale with the scanning force microscope. Annu Rev Biophys Biomol Struct 25:395–429

    CAS  Google Scholar 

  64. Hansma HG (2001) Surface biology of DNA by atomic force microscopy. Annu Rev Phys Chem 52:71–92

    Article  CAS  Google Scholar 

  65. Conlin RM, Brown RS (2001) Reconstitution of protein-DNA complexes for crystallization. Methods Mol Biol 148:547–556

    CAS  Google Scholar 

  66. Moss T (2001) DNA-protein interaction: principles and protocols, 2nd edn. Humana, Totowa, NJ

    Google Scholar 

  67. Masotti C, Armelin-Correa LM, Splendore A, Lin CJ, Barbosa A, Sogayar MC, Passos-Bueno MR (2005) A functional SNP in the promoter region of TCOF1 is associated with reduced gene expression and YY1 DNA-protein interaction. Gene 359:44–52

    Article  CAS  Google Scholar 

  68. Taulan M, Lopez E, Guittard C, Rene C, Baux D, Altieri JP, DesGeorges M, Claustres M, Romey MC (2007) First functional polymorphism in CFTR promoter that results in decreased transcriptional activity and Sp1/USF binding. Biochem Biophys Res Commun 361:775–781

    Article  CAS  Google Scholar 

  69. Champigny MJ, Mitchell M, Fox-Robichaud A, Trigatti BL, Igdoura SA (2009) A point mutation in the neu1 promoter recruits an ectopic repressor Nkx32 and results in a mouse model of sialidase deficiency. Mol Genet Metab 97:43–52

    Article  CAS  Google Scholar 

  70. Hoff JH, te Morsche RH, Roelofs HM, van der Logt EM, Nagengast FM, Peters WH (2009) COX-2 polymorphisms -765G → C and -1195A → G and colorectal cancer risk. World J Gastroenterol 15:4561–4565

    Article  CAS  Google Scholar 

  71. The International Cancer Genome Consortium (2010) International network of cancer genome projects. Nature 464:993–998

    Google Scholar 

  72. Marcy Y, Cousin PY, Rattier M, Cerovic G, Escalier G, Bena G, Gueron M, McDonagh L, le Boulaire F, Benisty H, Qeisbuch C, Avarre JC (2008) Innovative integrated system for real-time measurement of hybridization and melting on standard format microarrays. Biotechniques 44:913–920

    Article  CAS  Google Scholar 

  73. Ericsson O, Jarvius J, Schallmeiner E, Howell M, Nong RY, Reuter H, Hahn M, Stenberg J, Nilsson M, Landegren U (2008) A dual-tag microarray platform for high-performance nucleic acid and protein analyses. Nucleic Acids Res 36:e45

    Article  Google Scholar 

  74. Hesse J, Jacak J, Kasper M, Regl G, Eichberger T, Winklmayr M, Aberger F, Sonnleitner M, Schlapak R, Howorka S, Muresan L, Frischauf AM, Schütz GJ (2006) RNA expression profiling at the single molecule level. Genome Res 16:1041–1045

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Christian Kraus for provision of Fig. 4. Work on protein–DNA interaction in our laboratory is funded by the German Federal Ministry of Education and Research (BMBF) as part of the NGFNplus PaCaNet project as well as the Regulatory Genomics and DropTop projects funded by the European Commission. R.H. is supported by a PhD fellowship of the Egyptian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reham Helwa.

Additional information

Published in the special issue Focus on Bioanalysis with guest editors Antje J. Baeumner, Günter Gauglitz, and Frieder W. Scheller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helwa, R., Hoheisel, J.D. Analysis of DNA–protein interactions: from nitrocellulose filter binding assays to microarray studies. Anal Bioanal Chem 398, 2551–2561 (2010). https://doi.org/10.1007/s00216-010-4096-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4096-7

Keywords

Navigation