Skip to main content

Phosphorylation Site Prediction in Plants

  • Protocol
Plant Phosphoproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1306))

Abstract

Protein phosphorylation events on serine, threonine, and tyrosine residues are the most pervasive protein covalent bond modifications in plant signaling. Both low and high throughput studies reveal the importance of phosphorylation in plant molecular biology. Although becoming more and more common, the proteome-wide screening on phosphorylation by experiments remains time consuming and costly. Therefore, in silico prediction methods are proposed as a complementary analysis tool to enhance the phosphorylation site identification, develop biological hypothesis, or help experimental design. These methods build statistical models based on the experimental data, and they do not have some of the technical-specific bias, which may have advantage in proteome-wide analysis. More importantly computational methods are very fast and cheap to run, which makes large-scale phosphorylation identifications very practical for any types of biological study. Thus, the phosphorylation prediction tools become more and more popular. In this chapter, we will focus on plant specific phosphorylation site prediction tools, with essential illustration of technical details and application guidelines. We will use Musite, PhosPhAt and PlantPhos as the representative tools. We will present the results on the prediction of the Arabidopsis protein phosphorylation events to give users a general idea of the performance range of the three tools, together with their strengths and limitations. We believe these prediction tools will contribute more and more to the plant phosphorylation research community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pawson T (2004) Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116(2):191–203

    Article  CAS  PubMed  Google Scholar 

  2. Pawson T, Gish GD (1992) SH2 and SH3 domains: from structure to function. Cell 71:359–362

    Article  CAS  PubMed  Google Scholar 

  3. Wang H, Chevalier D, Larue C, Ki Cho S, Walker JC (2007) The protein phosphatases and protein kinases of Arabidopsis thaliana. Arabidopsis Book 5:e0106. doi:10.1199/tab.0106

    PubMed Central  PubMed  Google Scholar 

  4. Grimsrud PA, den Os D, Wenger CD, Swaney DL, Schwartz D, Sussman MR, Ane JM, Coon JJ (2010) Large-scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes. Plant Physiol 152(1):19–28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Yao Q, Ge H, Wu S, Zhang N, Chen W, Xu C, Gao J, Thelen JJ, Xu D (2014) P3DB 3.0: from plant phosphorylation sites to protein networks. Nucleic Acids Res 42:D1206–D1213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Zulawski M, Braginets R, Schulze WX (2013) PhosPhAt goes kinases—searchable protein kinase target information in the plant phosphorylation site database PhosPhAt. Nucleic Acids Res 41(D1):D1176–D1184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Yao Q, Gao J, Bollinger C, Thelen JJ, Xu D (2012) Predicting and analyzing protein phosphorylation sites in plants using musite. Front Plant Sci 3:186. doi:10.3389/fpls.2012.00186

    PubMed Central  PubMed  Google Scholar 

  8. Gao J, Thelen JJ, Dunker AK, Xu D (2010) Musite, a tool for global prediction of general and kinase-specific phosphorylation sites. Mol Cell Proteomics 9(12):2586–2600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Lee TY, Bretana NA, Lu CT (2011) PlantPhos: using maximal dependence decomposition to identify plant phosphorylation sites with substrate site specificity. BMC Bioinformatics 12:261. doi:10.1186/1471-2105-12-261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. UniProt: a hub for protein information (2014) Nucleic Acids Res. doi:10.1093/nar/gku989

  11. Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150–3152. doi:10.1093/bioinformatics/bts565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Obradovic Z, Peng K, Vucetic S, Radivojac P, Dunker AK (2005) Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins 61(Suppl 7):176–182. doi:10.1002/prot.20735

    Article  CAS  PubMed  Google Scholar 

  13. Iakoucheva LM, Radivojac P, Brown CJ, O'Connor TR, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32(3):1037–1049. doi:10.1093/nar/gkh253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Joachims T (1999) Making large-scale SVM learning practical. In: Advances in kernel methods—support vector learning. MIT Press, Boston

    Google Scholar 

  15. Kawashima S, Kanehisa M (2000) AAindex: amino acid index database. Nucleic Acids Res 28(1):374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Durek P, Schmidt R, Heazlewood JL, Jones A, MacLean D, Nagel A, Kersten B, Schulze WX (2010) PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res 38:D828–D834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Riano-Pachon DM, Kleessen S, Neigenfind J, Durek P, Weber E, Engelsberger WR, Walther D, Selbig J, Schulze WX, Kersten B (2010) Proteome-wide survey of phosphorylation patterns affected by nuclear DNA polymorphisms in Arabidopsis thaliana. BMC Genomics 11(1):411

    Article  PubMed Central  PubMed  Google Scholar 

  18. Ren J, Jiang C, Gao X, Liu Z, Yuan Z, Jin C, Wen L, Zhang Z, Xue Y, Yao X (2010) PhosSNP for systematic analysis of genetic polymorphisms that influence protein phosphorylation. Mol Cell Proteomics 9(4):623–634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yao, Q., Schulze, W.X., Xu, D. (2015). Phosphorylation Site Prediction in Plants. In: Schulze, W. (eds) Plant Phosphoproteomics. Methods in Molecular Biology, vol 1306. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2648-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2648-0_17

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2647-3

  • Online ISBN: 978-1-4939-2648-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics