Skip to main content

A High-Throughput Confocal Fluorescence Microscopy Platform to Study DNA Replication Stress in Yeast Cells

  • Protocol
DNA Replication

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1300))

Abstract

High-throughput imaging of yeast cells expressing fluorescent proteins can be used to understand biological pathways in the context of spatial organization. Here we describe a method for imaging yeast cells expressing proteins tagged with green fluorescent protein (GFP) and/or red fluorescent protein (RFP), with or without drug treatment, in a 384-well format, using the PerkinElmer Opera high-content confocal imaging microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frei C, Gasser S (2000) The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S-phase-specific foci. Genes Dev 14:81–96

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Lisby M, Barlow JH, Burgess RC, Rothstein R (2004) Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118:699–713

    Article  CAS  PubMed  Google Scholar 

  3. Lisby M, Rothstein R, Mortensen UH (2001) Rad52 forms DNA repair and recombination centers during S phase. Proc Natl Acad Sci 98:8276–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Tong AHY, Boone C (2006) Synthetic genetic array analysis in Saccharomyces cerevisiae. Methods Mol Biol 313:171–92

    CAS  PubMed  Google Scholar 

  5. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, Dow S, Lucau-Danila A, Anderson K, André B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian K-D, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Güldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kötter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang C, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–91

    Article  CAS  PubMed  Google Scholar 

  6. Singh J, Tyers M (2009) A Rab escort protein integrates the secretion system with TOR signaling and ribosome biogenesis. Genes Dev 1944–1958

    Google Scholar 

  7. Vizeacoumar FJ, van Dyk NS, Vizeacoumar F, Cheung V, Li J, Sydorskyy Y, Case N, Li Z, Datti A, Nislow C, Raught B, Zhang Z, Frey B, Bloom K, Boone C, Andrews BJ (2010) Integrating high-throughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis. J Cell Biol 188:69–81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Li Z, Vizeacoumar FJ, Bahr S, Li J, Warringer J, Vizeacoumar FS, Min R, Vandersluis B, Bellay J, Devit M, Fleming JA, Stephens A, Haase J, Lin Z-Y, Baryshnikova A, Lu H, Yan Z, Jin K, Barker S, Datti A, Giaever G, Nislow C, Bulawa C, Myers CL, Costanzo M, Gingras A-C, Zhang Z, Blomberg A, Bloom K, Andrews B, Boone C (2011) Systematic exploration of essential yeast gene function with temperature-sensitive mutants. Nat Biotechnol 29:361–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Huh W-K, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686–91

    Article  CAS  PubMed  Google Scholar 

  10. Tkach JM, Yimit A, Lee AY, Riffle M, Costanzo M, Jaschob D, Hendry JA, Ou J, Moffat J, Boone C, Davis TN, Nislow C, Brown GW (2012) Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 14:966–76

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Mazumder A, Pesudo LQ, McRee S, Bathe M, Samson LD (2013) Genome-wide single-cell-level screen for protein abundance and localization changes in response to DNA damage in S. cerevisiae. Nucleic Acids Res 41:9310–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Dénervaud N, Becker J, Delgado-Gonzalo R, Damay P, Rajkumar A, Unser M, Shore D, Naef F, Maerkl S (2013) A chemostat array enables the spatio-temporal analysis of the yeast proteome. Proc Natl Acad Sci 110:15842–7

    Article  PubMed Central  PubMed  Google Scholar 

  13. Yu Y, Ren J-Y, Zhang J-M, Suo F, Fang X-F, Wu F, Du L-L (2013) A proteome-wide visual screen identifies fission yeast proteins localizing to DNA double-strand breaks. DNA Repair (Amst) 12:433–43

    Article  CAS  Google Scholar 

  14. Abràmoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

  15. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank David Gallo and Jason Hendry for critical reading of the manuscript, Johnny Tkach for establishing our original imaging procedure, and the Boone, Andrews, and Moffat labs for sharing their high content screening expertise. This work was supported by Canadian Cancer Society grant number 702310.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant W. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Torres, N.P., Brown, G.W. (2015). A High-Throughput Confocal Fluorescence Microscopy Platform to Study DNA Replication Stress in Yeast Cells. In: Vengrova, S., Dalgaard, J. (eds) DNA Replication. Methods in Molecular Biology, vol 1300. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2596-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2596-4_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2595-7

  • Online ISBN: 978-1-4939-2596-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics