Skip to main content

Ypt1 and TRAPP Interactions: Optimization of Multicolor Bimolecular Fluorescence Complementation in Yeast

  • Protocol
Rab GTPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1298))

Abstract

Ypt/Rab GTPases are conserved molecular switches that regulate the multiple vesicular transport steps of all intracellular trafficking pathways. They are stimulated by guanine-nucleotide exchange factors (GEFs). In yeast, Ypt1 regulates transport from the endoplasmic reticulum (ER) to two alternative pathways: secretion and autophagy. Ypt1 is activated by TRAPP, a modular multi-subunit GEF. Whereas TRAPP I activates Ypt1 to mediate transport through the Golgi, TRAPP III, which contains all the subunits of TRAPP I plus Trs85, activates Ypt1-mediated transport to autophagosomes. The functional pair Ypt31/32 regulates traffic in and out of the trans-Golgi and is activated by TRAPP II, which consists of TRAPP I plus two specific subunits, Trs120 and Trs130. To study the interaction of Ypts with specific TRAPP subunits and interactions between the different subunits of TRAPP, including the cellular sites of these interactions, we have employed a number of approaches. One approach that we have recently optimized for the use in yeast is multicolor bimolecular fluorescence complementation (BiFC). BiFC, which employs split fluorescent tags, has emerged as a powerful approach for determining protein interaction in vivo. Because proteins work in complexes, the ability to determine more than one interaction at a time using multicolor BiFC is even more powerful. Defining the sites of protein interaction is possible by co-localization of the BiFC puncta with compartmental markers. Here, we describe a set of plasmids for multicolor BiFC optimized for use in yeast. We combined their use with a set of available yeast strains that express red fluorescence compartmental markers. We have recently used these constructs to determine Ypt1 and TRAPP interactions in two different processes: intracellular trafficking and autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Segev N (2001) Ypt and Rab GTPases: insight into functions through novel interactions. Curr Opin Cell Biol 13:500–511

    Article  CAS  PubMed  Google Scholar 

  2. Segev N (2011) Coordination of intracellular transport steps by GTPases. Semin Cell Dev Biol 22:33–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Jedd G, Richardson C, Litt R, Segev N (1995) The Ypt1 GTPase is essential for the first two steps of the yeast secretory pathway. J Cell Biol 131:583–590

    Article  CAS  PubMed  Google Scholar 

  4. Lipatova Z, Belogortseva N, Zhang XQ, Kim J, Taussig D, Segev N (2012) Regulation of selective autophagy onset by a Ypt/Rab GTPase module. Proc Natl Acad Sci U S A 109:6981–6986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Jones S, Newman C, Liu F, Segev N (2000) The TRAPP complex is a nucleotide exchanger for Ypt1 and Ypt31/32. Mol Biol Cell 11:4403–4411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Morozova N, Liang Y, Tokarev AA, Chen SH, Cox R, Andrejic J, Lipatova Z, Sciorra VA, Emr SD, Segev N (2006) TRAPPII subunits are required for the specificity switch of a Ypt-Rab GEF. Nat Cell Biol 8:1263–1269

    Article  CAS  PubMed  Google Scholar 

  7. Ohsumi Y (2014) Historical landmarks of autophagy research. Cell Res 24:9–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Sacher M, Kim YG, Lavie A, Oh BH, Segev N (2008) The TRAPP complex: insight into its architecture and function. Traffic 9:2032–2042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Segev N (2001) Ypt/Rab GTPases: regulators of protein trafficking. Sci STKE 2001:re11

    CAS  PubMed  Google Scholar 

  10. Taussig D, Lipatova Z, Segev N (2014) Trs20 is required for TRAPPIII complex assembly at the PAS and its function in autophagy. Traffic 15:327–337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kerppola TK (2008) Biomolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys 37:465–487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Taussig D, Lipatova Z, Kim JJ, Zhang X, Segev N (2013) Trs20 is required for TRAPPII assembly. Traffic 14:678–690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hu CD, Kerppola TK (2003) Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21:539–545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    Article  CAS  PubMed  Google Scholar 

  15. Sheff MA, Thorn KS (2004) Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21:661–670

    Article  CAS  PubMed  Google Scholar 

  16. Rizzo MA, Springer GH, Granada B, Piston DW (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22:445–449

    Article  CAS  PubMed  Google Scholar 

  17. Paquin N, Menade M, Poirier G, Donato D, Drouet E, Chartrand P (2007) Local activation of yeast ASH1 mRNA translation through phosphorylation of Khd1p by the casein kinase Yck1p. Mol Cell 26:795–809

    Article  CAS  PubMed  Google Scholar 

  18. Michnick SW (2001) Exploring protein interactions by interaction-induced folding of proteins from complementary peptide fragments. Curr Opin Struct Biol 11:472–477

    Article  CAS  PubMed  Google Scholar 

  19. Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296:913–916

    Article  CAS  PubMed  Google Scholar 

  20. Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P (1992) Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119–122

    Article  CAS  PubMed  Google Scholar 

  21. Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Lee J, Reiter W, Dohnal I, Gregori C, Beese-Sims S, Kuchler K, Ammerer G, Levin DE (2013) MAPK Hog1 closes the S. cerevisiae glycerol channel Fps1 by phosphorylating and displacing its positive regulators. Genes Dev 27:2590–2601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kim J, Kamada Y, Stromhaug PE, Guan J, Hefner-Gravink A, Baba M, Scott SV, Ohsumi Y, Dunn WA Jr, Klionsky DJ (2001) Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J Cell Biol 153:381–396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank A.U. Hain for critical reading of the manuscript. This research was supported by grant GM-45444 from NIH to N. Segev.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nava Segev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lipatova, Z., Kim, J.J., Segev, N. (2015). Ypt1 and TRAPP Interactions: Optimization of Multicolor Bimolecular Fluorescence Complementation in Yeast. In: Li, G. (eds) Rab GTPases. Methods in Molecular Biology, vol 1298. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2569-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2569-8_9

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2568-1

  • Online ISBN: 978-1-4939-2569-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics