Skip to main content

High-Throughput Assay for Profiling the Substrate Specificity of Rab GTPase-Activating Proteins

  • Protocol
Rab GTPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1298))

Abstract

Measurement of intrinsic as well as GTPase-Activating Protein (GAP)-catalyzed GTP hydrolysis is central to understanding the molecular mechanism and function of GTPases in diverse cellular processes. For the Rab GTPase family, which comprises at least 60 distinct proteins in humans, putative GAPs have been identified from both eukaryotic organisms and pathogenic bacteria. A major obstacle has involved identification of target substrates and determination of the specificity for the Rab family. Here, we describe a sensitive, high-throughput method to quantitatively profile GAP activity for Rab GTPases in microplate format based on detection of inorganic phosphate released after GTP hydrolysis. The method takes advantage of a well-characterized fluorescent phosphate sensor, requires relatively low protein concentrations, and can in principle be applied to any GAP-GTPase system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348(6297):125–132. doi:10.1038/348125a0

    Article  CAS  PubMed  Google Scholar 

  2. Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129(5):865–877

    Article  CAS  PubMed  Google Scholar 

  3. Bernards A, Settleman J (2004) GAP control: regulating the regulators of small GTPases. Trends Cell Biol 14(7):377–385. doi:10.1016/j.tcb.2004.05.003

    Article  CAS  PubMed  Google Scholar 

  4. Ligeti E, Welti S, Scheffzek K (2012) Inhibition and termination of physiological responses by GTPase activating proteins. Physiol Rev 92(1):237–272. doi:10.1152/physrev.00045.2010

    Article  CAS  PubMed  Google Scholar 

  5. Barr F, Lambright DG (2010) Rab GEFs and GAPs. Curr Opin Cell Biol 22:461–470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Eberth A, Dvorsky R, Becker CF, Beste A, Goody RS, Ahmadian MR (2005) Monitoring the real-time kinetics of the hydrolysis reaction of guanine nucleotide-binding proteins. Biol Chem 386(11):1105–1114. doi:10.1515/BC.2005.127

    Article  CAS  PubMed  Google Scholar 

  7. Scheffzek K, Ahmadian MR, Wittinghofer A (1998) GTPase-activating proteins: helping hands to complement an active site. Trends Biochem Sci 23(7):257–262

    Article  CAS  PubMed  Google Scholar 

  8. Gideon P, John J, Frech M, Lautwein A, Clark R, Scheffler JE, Wittinghofer A (1992) Mutational and kinetic analyses of the GTPase-activating protein (GAP)-p21 interaction: the C-terminal domain of GAP is not sufficient for full activity. Mol Cell Biol 12(5):2050–2056

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Marshall CB, Meiri D, Smith MJ, Mazhab-Jafari MT, Gasmi-Seabrook GM, Rottapel R, Stambolic V, Ikura M (2012) Probing the GTPase cycle with real-time NMR: GAP and GEF activities in cell extracts. Methods 57(4):473–485. doi:10.1016/j.ymeth.2012.06.014

    Article  CAS  PubMed  Google Scholar 

  10. Mazhab-Jafari MT, Marshall CB, Smith M, Gasmi-Seabrook GM, Stambolic V, Rottapel R, Neel BG, Ikura M (2010) Real-time NMR study of three small GTPases reveals that fluorescent 2′(3′)-O-(N-methylanthraniloyl)-tagged nucleotides alter hydrolysis and exchange kinetics. J Biol Chem 285(8):5132–5136. doi:10.1074/jbc.C109.064766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Nixon AE, Brune M, Lowe PN, Webb MR (1995) Kinetics of inorganic phosphate release during the interaction of p21ras with the GTPase-activating proteins, p120-GAP and neurofibromin. Biochemistry 34(47):15592–15598

    Article  CAS  PubMed  Google Scholar 

  12. Brune M, Hunter JL, Corrie JE, Webb MR (1994) Direct, real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase. Biochemistry 33(27):8262–8271

    Article  CAS  PubMed  Google Scholar 

  13. Webb MR (1992) A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems. Proc Natl Acad Sci U S A 89(11):4884–4887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Self AJ, Hall A (1995) Measurement of intrinsic nucleotide exchange and GTP hydrolysis rates. Methods Enzymol 256:67–76

    Article  CAS  PubMed  Google Scholar 

  15. Shutes A, Der CJ (2005) Real-time in vitro measurement of GTP hydrolysis. Methods 37(2):183–189. doi:10.1016/j.ymeth.2005.05.019

    Article  CAS  PubMed  Google Scholar 

  16. Mishra AK, Del Campo CM, Collins RE, Roy CR, Lambright DG (2013) The Legionella pneumophila GTPase activating protein LepB accelerates Rab1 deactivation by a non-canonical hydrolytic mechanism. J Biol Chem 288(33):24000–24011. doi:10.1074/jbc.M113.470625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Yu Q, Hu L, Yao Q, Zhu Y, Dong N, Wang DC, Shao F (2013) Structural analyses of Legionella LepB reveal a new GAP fold that catalytically mimics eukaryotic RasGAP. Cell Res 23(6):775–787. doi:10.1038/cr.2013.54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Nottingham RM, Pusapati GV, Ganley IG, Barr FA, Lambright DG, Pfeffer SR (2012) RUTBC2 protein, a Rab9A effector and GTPase-activating protein for Rab36. J Biol Chem 287(27):22740–22748. doi:10.1074/jbc.M112.362558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Dong N, Zhu Y, Lu Q, Hu L, Zheng Y, Shao F (2012) Structurally distinct bacterial TBC-like GAPs link Arf GTPase to Rab1 inactivation to counteract host defenses. Cell 150(5):1029–1041. doi:10.1016/j.cell.2012.06.050

    Article  CAS  PubMed  Google Scholar 

  20. Davey JR, Humphrey SJ, Junutula JR, Mishra AK, Lambright DG, James DE, Stockli J (2012) TBC1D13 is a RAB35 specific GAP that plays an important role in GLUT4 trafficking in adipocytes. Traffic 13(10):1429–1441. doi:10.1111/j.1600-0854.2012.01397.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Nottingham RM, Ganley IG, Barr FA, Lambright DG, Pfeffer SR (2011) RUTBC1 protein, a Rab9A effector that activates GTP hydrolysis by Rab32 and Rab33B proteins. J Biol Chem 286(38):33213–33222. doi:10.1074/jbc.M111.261115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Chotard L, Mishra AK, Sylvain MA, Tuck S, Lambright DG, Rocheleau CE (2010) TBC-2 regulates RAB-5/RAB-7-mediated endosomal trafficking in Caenorhabditis elegans. Mol Biol Cell 21(13):2285–2296. doi:10.1091/mbc.E09-11-0947

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ingmundson A, Delprato A, Lambright DG, Roy CR (2007) Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 450(7168):365–369. doi:10.1038/nature06336

    Article  CAS  PubMed  Google Scholar 

  24. Sklan EH, Serrano RL, Einav S, Pfeffer SR, Lambright DG, Glenn JS (2007) TBC1D20 is a Rab1 GTPase-activating protein that mediates hepatitis C virus replication. J Biol Chem 282(50):36354–36361

    Article  CAS  PubMed  Google Scholar 

  25. Mukhopadhyay A, Pan X, Lambright DG, Tissenbaum HA (2007) An endocytic pathway as a target of tubby for regulation of fat storage. EMBO Rep 8(10):931–938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Pan X, Eathiraj S, Munson M, Lambright DG (2006) TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism. Nature 442(7100):303–306. doi:10.1038/nature04847

    Article  CAS  PubMed  Google Scholar 

  27. Eathiraj S, Pan X, Ritacco C, Lambright DG (2005) Structural basis of family-wide Rab GTPase recognition by rabenosyn-5. Nature 436(7049):415–419. doi:10.1038/nature03798

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Mishra A, Eathiraj S, Corvera S, Lambright DG (2010) Structural basis for Rab GTPase recognition and endosome tethering by the C2H2 zinc finger of Early Endosomal Autoantigen 1 (EEA1). Proc Natl Acad Sci U S A 107(24):10866–10871. doi:10.1073/pnas.1000843107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by an NIH grant GM056324 to DGL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Lambright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mishra, A.K., Lambright, D.G. (2015). High-Throughput Assay for Profiling the Substrate Specificity of Rab GTPase-Activating Proteins. In: Li, G. (eds) Rab GTPases. Methods in Molecular Biology, vol 1298. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2569-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2569-8_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2568-1

  • Online ISBN: 978-1-4939-2569-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics