Skip to main content

Assays for Induction of the Unfolded Protein Response and Selective Activation of the Three Major Pathways

  • Protocol
Stress Responses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1292))

Abstract

The endoplasmic reticulum (ER) is responsible for the proper folding and processing of secreted and transmembrane proteins within the cell. Stimuli that disrupt ER function cause an accumulation of misfolded proteins within the ER lumen, a condition termed ER stress. The unfolded protein response (UPR) is activated in response to ER stress in an attempt to restore ER homeostasis. UPR is initiated by three transmembrane sensors that activate three signaling pathways which lead to the activation of transcription factors and production of chaperones. The coordinated action of these three pathways attempt to restore homeostasis. However, if the ER homeostasis cannot be restored, it initiates apoptosis. Deregulated or compromised functions of these pathways can therefore lead to the pathogenesis of disease. In order to understand the molecular mechanisms involved, it is important to study each pathway independently. Here, we describe a number of approaches to selectively target each arm of UPR and investigate the functional significance of the UPR pathway involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hendershot L et al (1996) Inhibition of immunoglobulin folding and secretion by dominant negative BiP ATPase mutants. Proc Natl Acad Sci U S A 93(11):5269–5274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Boyce M, Yuan J (2006) Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 13(3):363–373

    Article  CAS  PubMed  Google Scholar 

  3. Rutkowski DT, Kaufman RJ (2004) A trip to the ER: coping with stress. Trends Cell Biol 14(1):20–28

    Article  CAS  PubMed  Google Scholar 

  4. Marciniak SJ et al (2006) Activation-dependent substrate recruitment by the eukaryotic translation initiation factor 2 kinase PERK. J Cell Biol 172(2):201–209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397(6716):271–274

    Article  CAS  PubMed  Google Scholar 

  6. Harding HP et al (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11(3):619–633

    Article  CAS  PubMed  Google Scholar 

  7. Ma Y et al (2002) Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol 318(5):1351–1365

    Article  CAS  PubMed  Google Scholar 

  8. van Huizen R et al (2003) P58IPK, a novel endoplasmic reticulum stress-inducible protein and potential negative regulator of eIF2alpha signaling. J Biol Chem 278(18):15558–15564

    Article  PubMed  Google Scholar 

  9. Yan W et al (2002) Control of PERK eIF2alpha kinase activity by the endoplasmic reticulum stress-induced molecular chaperone P58IPK. Proc Natl Acad Sci U S A 99(25):15920–15925

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Brush MH, Weiser DC, Shenolikar S (2003) Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1 alpha to the endoplasmic reticulum and promotes dephosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol 23(4):1292–1303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ma Y, Hendershot LM (2003) Delineation of a negative feedback regulatory loop that controls protein translation during endoplasmic reticulum stress. J Biol Chem 278(37):34864–34873

    Article  CAS  PubMed  Google Scholar 

  12. Gardner BM et al (2013) Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb Perspect Biol 5(3):a013169

    Article  PubMed Central  PubMed  Google Scholar 

  13. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529

    Article  CAS  PubMed  Google Scholar 

  14. Forman MS, Lee VM, Trojanowski JQ (2003) ‘Unfolding’ pathways in neurodegenerative disease. Trends Neurosci 26(8):407–410

    Article  CAS  PubMed  Google Scholar 

  15. Zhao L, Ackerman SL (2006) Endoplasmic reticulum stress in health and disease. Curr Opin Cell Biol 18(4):444–452

    Article  CAS  PubMed  Google Scholar 

  16. Kaser A, Blumberg RS (2009) Endoplasmic reticulum stress in the intestinal epithelium and inflammatory bowel disease. Semin Immunol 21(3):156–163

    Article  CAS  PubMed  Google Scholar 

  17. Laybutt DR et al (2007) Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50(4):752–763

    Article  CAS  PubMed  Google Scholar 

  18. Yamamoto K et al (2010) Induction of liver steatosis and lipid droplet formation in ATF6alpha-knockout mice burdened with pharmacological endoplasmic reticulum stress. Mol Biol Cell 21(17):2975–2986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Doyle KM et al (2011) Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. J Cell Mol Med 15(10):2025–2039

    Article  CAS  PubMed  Google Scholar 

  20. Stefani IC et al (2012) The role of ER stress-induced apoptosis in neurodegeneration. Curr Alzheimer Res 9(3):373–387

    Article  CAS  PubMed  Google Scholar 

  21. Silva RM et al (2005) CHOP/GADD153 is a mediator of apoptotic death in substantia nigra dopamine neurons in an in vivo neurotoxin model of parkinsonism. J Neurochem 95(4):974–986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Lee H et al (2012) IRE1 plays an essential role in ER stress-mediated aggregation of mutant huntingtin via the inhibition of autophagy flux. Hum Mol Genet 21(1):101–114

    Article  PubMed  Google Scholar 

  23. Hoozemans JJ et al (2005) The unfolded protein response is activated in Alzheimer’s disease. Acta Neuropathol 110(2):165–172

    Article  CAS  PubMed  Google Scholar 

  24. Lee AS, Hendershot LM (2006) ER stress and cancer. Cancer Biol Ther 5(7):721–722

    Article  CAS  PubMed  Google Scholar 

  25. Mimura N et al (2012) Blockade of XBP1 splicing by inhibition of IRE1alpha is a promising therapeutic option in multiple myeloma. Blood 119(24):5772–5781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Salminen A et al (2009) ER stress in Alzheimer’s disease: a novel neuronal trigger for inflammation and Alzheimer’s pathology. J Neuroinflammation 6:41

    Article  PubMed Central  PubMed  Google Scholar 

  27. Minamino T, Kitakaze M (2010) ER stress in cardiovascular disease. J Mol Cell Cardiol 48(6):1105–1110

    Article  CAS  PubMed  Google Scholar 

  28. Hosoi T, Ozawa K (2010) Endoplasmic reticulum stress in disease: mechanisms and therapeutic opportunities. Clin Sci (Lond) 118(1):19–29

    Article  Google Scholar 

  29. Boelens J et al (2007) Review. The endoplasmic reticulum: a target for new anticancer drugs. In Vivo 21(2):215–226

    CAS  PubMed  Google Scholar 

  30. Iwawaki T, Akai R (2006) Analysis of the XBP1 splicing mechanism using endoplasmic reticulum stress-indicators. Biochem Biophys Res Commun 350(3):709–715

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y et al (2000) Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response. J Biol Chem 275(35):27013–27020

    CAS  PubMed  Google Scholar 

  32. Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23(21):7448–7459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Wang S, Kaufman RJ (2012) The impact of the unfolded protein response on human disease. J Cell Biol 197(7):857–867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Feldman DE, Chauhan V, Koong AC (2005) The unfolded protein response: a novel component of the hypoxic stress response in tumors. Mol Cancer Res 3(11):597–605

    Article  CAS  PubMed  Google Scholar 

  35. Koumenis C (2006) ER stress, hypoxia tolerance and tumor progression. Curr Mol Med 6(1):55–69

    Article  CAS  PubMed  Google Scholar 

  36. Hetz C, Glimcher LH (2009) Fine-tuning of the unfolded protein response: assembling the IRE1alpha interactome. Mol Cell 35(5):551–561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Baccelli I, Trumpp A (2012) The evolving concept of cancer and metastasis stem cells. J Cell Biol 198(3):281–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Xi H et al (2011) 2-Deoxy-D-glucose activates autophagy via endoplasmic reticulum stress rather than ATP depletion. Cancer Chemother Pharmacol 67(4):899–910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Moon JL et al (2012) Regulation of brefeldin A-induced ER stress and apoptosis by mitochondrial NADP(+)-dependent isocitrate dehydrogenase. Biochem Biophys Res Commun 417(2):760–764

    Article  CAS  PubMed  Google Scholar 

  40. Torii S et al (1995) Cytotoxicity of brefeldin A correlates with its inhibitory effect on membrane binding of COP coat proteins. J Biol Chem 270(19):11574–11580

    Article  CAS  PubMed  Google Scholar 

  41. Yoshida I et al (2006) Depletion of intracellular Ca2+ store itself may be a major factor in thapsigargin-induced ER stress and apoptosis in PC12 cells. Neurochem Int 48(8):696–702

    Article  CAS  PubMed  Google Scholar 

  42. Ling YH et al (2009) Activation of ER stress and inhibition of EGFR N-glycosylation by tunicamycin enhances susceptibility of human non-small cell lung cancer cells to erlotinib. Cancer Chemother Pharmacol 64(3):539–548

    Article  CAS  PubMed  Google Scholar 

  43. Yu SM, Kim SJ (2010) Endoplasmic reticulum stress (ER-stress) by 2-deoxy-D-glucose (2DG) reduces cyclooxygenase-2 (COX-2) expression and N-glycosylation and induces a loss of COX-2 activity via a Src kinase-dependent pathway in rabbit articular chondrocytes. Exp Mol Med 42(11):777–786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Clement MV, Sivarajah S, Pervaiz S (2005) Production of intracellular superoxide mediates dithiothreitol-dependent inhibition of apoptotic cell death. Antioxid Redox Signal 7(3–4):456–464

    Article  CAS  PubMed  Google Scholar 

  45. Strauss SJ et al (2007) The proteasome inhibitor bortezomib acts independently of p53 and induces cell death via apoptosis and mitotic catastrophe in B-cell lymphoma cell lines. Cancer Res 67(6):2783–2790

    Article  CAS  PubMed  Google Scholar 

  46. Roy B, Lee AS (1999) The mammalian endoplasmic reticulum stress response element consists of an evolutionarily conserved tripartite structure and interacts with a novel stress-inducible complex. Nucleic Acids Res 27(6):1437–1443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Yoshida H et al (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 273(50):33741–33749

    Article  CAS  PubMed  Google Scholar 

  48. Kokame K, Kato H, Miyata T (2001) Identification of ERSE-II, a new cis-acting element responsible for the ATF6-dependent mammalian unfolded protein response. J Biol Chem 276(12):9199–9205

    Article  CAS  PubMed  Google Scholar 

  49. Samali A et al (2010) Methods for monitoring endoplasmic reticulum stress and the unfolded protein response. Int J Cell Biol 2010:830307

    PubMed Central  PubMed  Google Scholar 

  50. Brunsing R et al (2008) B- and T-cell development both involve activity of the unfolded protein response pathway. J Biol Chem 283(26):17954–17961

    Article  CAS  PubMed  Google Scholar 

  51. Chen X, Shen J, Prywes R (2002) The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. J Biol Chem 277(15):13045–13052

    Article  CAS  PubMed  Google Scholar 

  52. Nadanaka S et al (2004) Activation of mammalian unfolded protein response is compatible with the quality control system operating in the endoplasmic reticulum. Mol Biol Cell 15(6):2537–2548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Atkins C et al (2013) Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res 73(6):1993–2002

    Article  CAS  PubMed  Google Scholar 

  54. Stockwell SR et al (2012) Mechanism-based screen for G1/S checkpoint activators identifies a selective activator of EIF2AK3/PERK signalling. PLoS One 7(1):e28568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Cross BC et al (2012) The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. Proc Natl Acad Sci U S A 109(15):E869–E878

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Papandreou I et al (2011) Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 117(4):1311–1314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Page KM et al (2004) Dominant-negative calcium channel suppression by truncated constructs involves a kinase implicated in the unfolded protein response. J Neurosci 24(23):5400–5409

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This publication has emanated from research conducted with the financial support of Health Research Board (grant numbers HRA_HSR/2010/24) to S.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Gupta Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gupta, A., Read, D.E., Gupta, S. (2015). Assays for Induction of the Unfolded Protein Response and Selective Activation of the Three Major Pathways. In: Oslowski, C. (eds) Stress Responses. Methods in Molecular Biology, vol 1292. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2522-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2522-3_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2521-6

  • Online ISBN: 978-1-4939-2522-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics