Skip to main content

Advertisement

Log in

Activation of ER stress and inhibition of EGFR N-glycosylation by tunicamycin enhances susceptibility of human non-small cell lung cancer cells to erlotinib

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The epidermal growth factor receptor (EGFR), an N-glycosylated transmembrane protein, is the target of erlotinib, an orally bioavailable agent approved for treatment of patients with non-small cell lung cancer (NSCLC). In this study, we examined whether inhibition of EGFR N-glycosylation and stimulation of endoplasmic reticulum (ER) stress by tunicamycin enhances erlotinib-induced growth inhibition in NSCLC cell lines.

Methods

We examined the effects of tunicamycin and erlotinib on cytotoxicity of erlotinib-sensitive and resistant NSCLC cell lines, as well its effects on apoptotic pathways and on EGFR activation and subcellular localization.

Results

A minimally cytotoxic concentration of tunicamycin (1 μM) resulted in~2.6–2.9 fold and~6.8–13.5 fold increase in erlotinib-induced antiproliferative effects in sensitive (H322 and H358) and resistant cell lines (A549 and H1650), respectively. We found that tunicamycin generated an aglycosylated form of 130 kDa EGFR. Tunicamycin additionally affected EGFR activation and subcellular localization. Interestingly, the combination of tunicamycin and erlotinib caused more inhibitory effect on EGFR phosphorylation than that of erlotinib alone. Moreover, the combination induced apoptosis in H1650 cells through induction of CHOP expression, activation of caspase-12 and caspase-3, cleavage of PARP and bak, and down-regulation of anti-apoptotic proteins bcl-xL and survivin.

Conclusions

Overall, our data demonstrate that tunicamycin significantly enhances the susceptibility of lung cancer cells to erlotinib, particularly sensitizing resistant cell lines to erlotinib, and that such sensitization may be associated with activation of the ER stress pathway and with inhibition of EGFR N-glycosylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhen Y, Caprioli RM, Staros JV (2003) Characterization of glycosylation sites of the epidermal growth factor receptor. Biochemistry 42:5474–5492

    Article  Google Scholar 

  2. Zwick E, Hackel PO, Prenzel N, Ullrich A (1999) The EGF receptor as central transducer of heterologous signaling systems. Trends Pharmacol Sci 20:408–412

    Article  PubMed  CAS  Google Scholar 

  3. Herbst RS (2004) Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 59(2 suppl):21–26

    PubMed  CAS  Google Scholar 

  4. Scagliotti GV, Selvaggi G, Novello S, Hirsch FR (2004) The biology of epidermal growth factor receptor in lung cancer. Clin Cancer Res 15(12pt2):4227s–4232s

    Article  Google Scholar 

  5. Haeder M, Rotsch M, Bepler G et al (1988) Epidermal growth factor receptor expression in human lung cancer cell lines. Cancer Res 48:1132–1136

    PubMed  CAS  Google Scholar 

  6. Herbst RS, Bunn PA (2003) Targeting the epidermal growth factor receptor in non-small cell lung cancer. Clin Cancer Res 9:5813–5824

    PubMed  CAS  Google Scholar 

  7. Moyer JD, Barbacci E, Iwata KK et al (1997) Induction of apoptosis and cell cycle arrest by OSI-774, an inhibitor of epidermal growth factor tyrosine kinase. Cancer Res 57:4838–4848

    PubMed  CAS  Google Scholar 

  8. Polack VA, Savage DM, Baker DA et al (1999) Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinoma with OSI-774: dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J Pharmcol Exper 291:739–748

    Google Scholar 

  9. Shepherd FA, Rodrigues PJ, Ciuleanu T et al (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353:123–132

    Article  PubMed  CAS  Google Scholar 

  10. Herbst RS, Prager D, Hermann R et al (2005) TRIBUTE: phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol 23:5892–5899

    Article  PubMed  CAS  Google Scholar 

  11. Gatzemeier U, Pluzanska A, Szczesna A et al (2007) Phase III study of erlotinib in combination with cisplatin and gemcitabine in advanced non-small-cell lung cancer: the Tarceva Lung Cancer Investigation Trial. J Clin Oncol 25:1545–1552

    Article  PubMed  CAS  Google Scholar 

  12. Zong WX, Li C, Hatzivassiliou G, Linfsten T, Yu QC, Yuan J, Thompson CB (2003) Bax and bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162:59–69

    Article  PubMed  CAS  Google Scholar 

  13. Ullrich A, Coussens L, Hayflick JS et al (1984) Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309:418–425

    Article  PubMed  CAS  Google Scholar 

  14. Fernandes H, Cohen S, Bishayee S (2001) Glycosylation-induced conformational modification positively regulates receptor–receptor association: a study with an aberrant epidermal growth factor receptor (EGFRvlll/DeltaEGFR) expressed in cancer cells. J Biol Chem 276:5357–5383

    Google Scholar 

  15. Elbein AD (1987) Inhibition of the biosynthesis and processing of N-linked oligosaccharide chains. Annu Rev Biochem 56:497–534

    Article  PubMed  CAS  Google Scholar 

  16. Noda I, Fujieda S, Seki M et al (1999) Inhibition of N-linked glycosylation by tunicamycin enhances sensitivity to cisplatin in human head-neck carcinoma cells. Int J Cancer 80:279–284

    Article  PubMed  CAS  Google Scholar 

  17. Shiraishi T, Yoshida T, Nakata S et al (2005) Tunicamycin enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human prostate cancer cells. Cancer Res 65:6364–6370

    Article  PubMed  CAS  Google Scholar 

  18. Lampugnani MG, Corada M, Caveda L et al (1995) The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, β-catenin, and α-catenin with vascular endothelial cadherin (VE-cadherin). J Cell Biol 129:203–217

    Article  PubMed  CAS  Google Scholar 

  19. Ling YH, Perez-Soler R (2004) Induction of G1 phase arrest and apoptosis by erlotinib, a specific and clinical active EGFR tyrosine kinase inhibitor, in human H322 non-small cell lung cancer cells. Proc AACR 45:4654

    Google Scholar 

  20. Hidalgo M, Siu LL, Nemunaitis J et al (2001) Phase I and pharmacology study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor in patients with advanced solid malignancies. J Clin Oncol 19:3267–3279

    PubMed  CAS  Google Scholar 

  21. Gamou S, Shimagaki M, Minoshima S, Kobayashi S, Shimizu N (1989) Subcellular localization of the EGF receptor maturation process. Exp Cell Res 183:197–206

    Article  PubMed  CAS  Google Scholar 

  22. Shiraishi H, Okamoto H, Yoshimura A, Yoshida H (2006) ER stress-induced apoptosis and caspase-12 activation occurs downstream of mitochondrial apoptosis involving Apaf-1. J Cell Sci 119:3958–3966

    Article  PubMed  CAS  Google Scholar 

  23. Zinszner H, Kuroda M, Wang X et al (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12:982–995

    Article  PubMed  CAS  Google Scholar 

  24. Cory S, Adams JM (2002) The bcl2 family: regulators of the cellular life-or death switch. Nat Rev Cancer 2:647–656

    Article  PubMed  CAS  Google Scholar 

  25. Sequist LV, Bell DW, Lynch TJ, Haber DA (2007) Molecular predictors of response to epidermal growth factor receptor antagonists in non-small cell lung cancer. J Clin Oncol 25:587–595

    Article  PubMed  CAS  Google Scholar 

  26. Riely GJ (2008) Second-generation epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. J Thorac Oncol. 3:S146–S149

    PubMed  Google Scholar 

  27. Paez JG, Janne PA, Lee JC et al (2004) EGFR mutation in lung cancer; correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    Article  PubMed  CAS  Google Scholar 

  28. Janmaat ML, Rodriguez JA, Gallegos-Ruiz M, Kruyt FAE, Giaccone G (2006) Enhanced cytotoxicity induced by gefitinib and specific inhibitors of the Ras or phosphatidyl inositol-3 kinase pathways in non-small cell lung cancer cells. Int J Cancer 118:209–214

    Article  PubMed  CAS  Google Scholar 

  29. Soderquist AM, Carpenter G (1984) Glycosylation of the epidermal growth factor receptor in A431 cells: the contribution of carbohydrate to receptor function. J Biol Chem 259:12586–12594

    PubMed  CAS  Google Scholar 

  30. Bishayee S (2000) Role of conformational alteration in the epidermal growth factor receptor (EGFR) function. Biochem Pharmacol 60:1217–1223

    Article  PubMed  CAS  Google Scholar 

  31. Konishi A, Berk BC (2003) Epidermal growth factor receptor transactivation is regulated by glucose in vascular smooth muscle cells. J Biol Chem 278(37):35049–35056

    Article  PubMed  CAS  Google Scholar 

  32. Hu P, Hau Z, Couvillon AD, Exton JH (2004) Critical role of endogenous AKT/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J Biol Chem 279:49420–49429

    Article  PubMed  CAS  Google Scholar 

  33. Oda T, Kosuge Y, Arakawa M et al (2008) Distinct mechanism of cell death is reposnsible for tunicamycin-induced ER stress in SK-N-SH and SH-SY5Y cells. Neurosci Res. 60:29–39

    Article  PubMed  CAS  Google Scholar 

  34. Ling YH, Lin R, Perez-Soler R (2008) Erlotinib induces mitochondrial-mediated apoptosis in human H3255 non-small-cell lung cancer cells with epidermal growth factor receptorL858R mutation through mitochondrial oxidative phosphorylation-dependent activation of BAX and BAK. Mol Pharmacol 74(3):793–806

    Article  PubMed  CAS  Google Scholar 

  35. Mantha AJ, Hanson JE, Goss G et al (2005) Targeting the mevalonate pathway inhibits the function of the epidermal growth factor receptor. Clin Cancer Res 11:2398–2407

    Article  PubMed  CAS  Google Scholar 

  36. Siddals KW, Marshman E, Westwood M, Gibson JM (2004) Abrogation of insulin-like growth factor-I (IGF-I) and insulin action by mevalonic acid depletion: synergy between protein prenylation and receptor glycosylation pathways. J Biol Chem 279:38353–38359

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Missak Haigentz Jr.

Additional information

This work was supported by National Institutes of Health Grants CA91784 and CA96515.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ling, YH., Li, T., Perez-Soler, R. et al. Activation of ER stress and inhibition of EGFR N-glycosylation by tunicamycin enhances susceptibility of human non-small cell lung cancer cells to erlotinib. Cancer Chemother Pharmacol 64, 539–548 (2009). https://doi.org/10.1007/s00280-008-0902-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-008-0902-8

Keywords

Navigation