Skip to main content

Bridging Two Cultures: Minimalistic Networks Prepared by Microfluidic Arraying, and Open Access Compartments for Electrophysiology

  • Protocol
  • First Online:
Microfluidic and Compartmentalized Platforms for Neurobiological Research

Abstract

Microfabrication protocols are described for two compartmentalized neuron culture platforms which extend beyond the capabilities of conventional systems. The first involves a differential flow microfluidic circuit for arraying single neurons, along with protocols for in chip biomaterial patterning and the selective treatment of somata or outgrowth compartments. These minimalistic neuronal networks are ideal for spatially resolved research using rare and precious neuronal subtypes as well as parallelization for screening biochemical libraries. The second, open-access, system solves the micro-to-macro interface challenge to enable the insertion of micromanipulators for electrophysiology studies or localized perturbation using a microinjector. This system is especially useful for the spatiotemporal investigation of mechanisms underlying disease, such as neurodegeneration and epileptic seizures. Design files along with soft lithography replication techniques are provided to facilitate the straightforward uptake of these platforms. Technology integration approaches are also presented for the alignment of arrayed neurons with individual microelectrodes for highly parallel electrophysiological and electrochemical measurements throughout nodes in the compartmentalized neuronal network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng JQ et al (2001) A functional role for intra-axonal protein synthesis during axonal regeneration from adult sensory neurons. J Neurosci 21(23):9291–9303

    CAS  PubMed  Google Scholar 

  2. Campenot RB (1977) Local control of neurite development by nerve growth factor. Proc Natl Acad Sci U S A 74(10):4516–4519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Campenot RB (1982) Development of sympathetic neurons in compartmentalized cultures. I. Local control of neurite growth by nerve growth factor. Dev Biol 93(1):1–12

    Article  CAS  PubMed  Google Scholar 

  4. Taylor AM et al (2003) Microfluidic multicompartment device for neuroscience research. Langmuir 19:1551–1556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Taylor AM et al (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2(8):559–565

    Article  Google Scholar 

  6. Whitesides GM et al (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373

    Article  CAS  PubMed  Google Scholar 

  7. Dinh ND et al (2013) Microfluidic construction of minimalistic neuronal co-cultures. Lab Chip 13(7):1402–1412

    Article  CAS  PubMed  Google Scholar 

  8. Arundell M, Perry VH, Newman TA (2011) Integration of a macro-micro architecture compartmentalised neuronal culture device using a rapid prototyping moulding process. Lab Chip 11:3001–3005

    Article  CAS  PubMed  Google Scholar 

  9. Yang Z et al (2010) A review of nanoparticle functionality and toxicity on the central nervous system. J R Soc Interface 7:S411–S422. doi:10.1098/rsif.2010.0158.focus

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Brenneman KA et al (2000) Direct olfactory transport of inhaled manganese ((MnCl2)-Mn-54) to the rat brain: toxicokinetic investigations in a unilateral nasal occlusion model. Toxicol Appl Pharmacol 169(3):238–248

    Article  CAS  PubMed  Google Scholar 

  11. Booth R, Kim H (2012) Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab Chip 12:1784–1792

    Article  CAS  PubMed  Google Scholar 

  12. Magalães AC et al (2005) Uptake and neuritic transport of scrapie prion protein coincident with infection of neuronal cells. J Neurosci 25(21):5207–5216

    Article  Google Scholar 

  13. Diogenes MJ et al (2012) Extracellular alpha-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation. J Neurosci 32(34):11750–11762

    Article  CAS  PubMed  Google Scholar 

  14. Kunze A et al (2011) Co-pathological connected primary neurons in a microfluidic device for Alzheimer studies. Biotechnol Bioeng 108(9):2241–2245

    Article  CAS  PubMed  Google Scholar 

  15. Trojanowski JQ et al (2010) Alzheimer’s disease neuroimaging, I. Update on the biomarker core of the Alzheimer’s disease neuroimaging initiative subjects. Alzheimers Dement 6(3):230–238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Janus C et al (2000) A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408(6815):979–982

    Article  CAS  PubMed  Google Scholar 

  17. Morgan D et al (2000) A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408(6815):982–985

    Article  CAS  PubMed  Google Scholar 

  18. Asuni AA et al (2007) Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci 27(34):9115–9129

    Article  CAS  PubMed  Google Scholar 

  19. Egger B et al (2013) In vitro imaging of primary neural cell culture from Drosophila. Nat Protoc 8(5):958–965

    Article  PubMed  Google Scholar 

  20. Tan WH, Takeuchi S (2007) A trap-and-release integrated microfluidic system for dynamic microarray applications. Proc Natl Acad Sci U S A 104(4):1146–1151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Frimat J-P et al (2011) A microfluidic array with cellular valving for single cell co-culture. Lab Chip 11(2):231–237

    Article  CAS  PubMed  Google Scholar 

  22. Huang NP et al (2001) Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: surface-analytical characterization and resistance to serum and fibrinogen adsorption. Langmuir 17:489–498

    Article  CAS  Google Scholar 

  23. Hardelauf H et al (2011) High fidelity neuronal networks formed by plasma masking with a bilayer membrane: analysis of neurodegenerative and neuroprotective processes. Lab Chip 11(16):2763–2771

    Article  CAS  PubMed  Google Scholar 

  24. Boyden ES et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268

    Article  CAS  PubMed  Google Scholar 

  25. Pastrana E (2012) Light-based electrophysiology. Nat Methods 9(1):38

    Article  CAS  Google Scholar 

  26. Kelly RC et al (2007) Comparison of recordings from microelectrode arrays and single electrodes in the visual cortex. J Neurosci 27(2):261–264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Alberti M et al (2010) Characterization of a patch-clamp microchannel array towards neuronal network analysis. Microfluid Nanofluid 9:963–972

    Article  CAS  Google Scholar 

  28. Robinson DL et al (2003) Detecting subsecond dopamine release with fast scan cyclic voltammetry in vivo. Clin Chem 49(10):1763–1773

    Article  CAS  PubMed  Google Scholar 

  29. Patel BA, Arundell M et al (2010) Microelectrode investigation of neuronal ageing from a single identified neuron. Phys Chem Chem Phys 12:10065–10072

    Article  CAS  PubMed  Google Scholar 

  30. Land SC (1999) The self-referencing oxygen microelectrode detection of transmembrane oxygen flux from single cells. J Exp Biol 202:211–218

    CAS  PubMed  Google Scholar 

  31. Patel BA, Arundell M et al (2008) Individually addressable microelectrode array for monitoring oxygen and nitric oxide release. Anal Bioanal Chem 390:1379–1387

    Article  CAS  PubMed  Google Scholar 

  32. Cheer JF et al (2005) Simultaneous dopamine and single-unit recordings reveal accumbens GABAergic responses: Implications for intracranial self-stimulation. Proc Natl Acad Sci U S A 102:19150–19155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Shi P et al (2007) Local presentation of L1 and N-cadherin in multicomponent, microscale patterns differentially direct neuron function in vitro. Dev Neurobiol 67(13):1765–1176

    Article  CAS  PubMed  Google Scholar 

  34. Cohen MS et al (2011) Neurotrophin-mediated dendrite-to-nucleus signaling revealed by microfluidic compartmentalization of dendrites. Proc Natl Acad Sci U S A 108(27):11246–11251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Zala D et al (2013) Vesicular glycolysis provides on-board energy for fast axonal transport. Cell 152(3):479–491

    Article  CAS  PubMed  Google Scholar 

  36. Peyrin JM et al (2011) Axon diodes for the reconstruction of orientated neuronal networks in microfluidic chambers. Lab Chip 11(21):3663–3673

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research was supported by the German Research Foundation (DFG WE3737/3-1) and by a Bundesministerium für Bildung und Forschung grant (BMBF 0101-31P6541). Heike Hardelauf thanks the International Leibniz Graduate School “Systems Biology Lab-on-a-Chip” for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jonathan West or Martin Arundell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

West, J. et al. (2015). Bridging Two Cultures: Minimalistic Networks Prepared by Microfluidic Arraying, and Open Access Compartments for Electrophysiology. In: Biffi, E. (eds) Microfluidic and Compartmentalized Platforms for Neurobiological Research. Neuromethods, vol 103. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2510-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2510-0_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2509-4

  • Online ISBN: 978-1-4939-2510-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics