Skip to main content

Advertisement

Log in

Characterization of a patch-clamp microchannel array towards neuronal networks analysis

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The attempt to combine the planar patch clamping idea with the microelectrode array (MEA) concept has led to the fabrication of a patch clamp microchannel array (PCμCA). Such a system is thought to be a powerful framework for neuroscience research and drug screening, as a novel tool for simultaneous patch clamping of cultured cells or neurons in the same network. A disposable silicon/silicon dioxide (Si/SiO2) chip with a microhole array was integrated in a microfluidic system for cell handling, perfusion and electrical recording. Fluidic characterization showed that our PCμCA can work as a precise local perfusion system for chemicals or drugs. Electrical characterization for microholes of 2 μm and 3 μm revealed an access resistance of 8.09 ± 0.84 MΩ and 3.18 ± 0.63 MΩ, respectively. The capacitance was 98.6 ± 13.2 pF. The values are close to what can be expected from theory, but the capacitance is still too high for high resolution recording. The system was tested on HeLa cells: successful cell trapping with a sealing of 40 MΩ was recorded. Modification of the Si/SiO2 chip is needed in order to achieve a better sealing and long-term cell culturing in the PCμCA remains to be tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersson H, van den Berg A (2003) Microfluidic devices for cellomics: a review. Sens Actuators B Chem 92(3):315–325. doi:10.1016/S0925-4005(03)00266-1

    Article  Google Scholar 

  • Bani-Yaghoub M, Tremblay R, Voicu R, Mealing G, Monette R, Py C, Faid K, Silkorska M (2005) Neurogenesis and neuronal communication on micropatterned neurochips. Biotechnol Bioeng 92(3):336–345. doi:10.1002/bit.20618

    Article  Google Scholar 

  • Behrends J, Fertig N (2007) Planar patch clamping. In: Walz W (ed) Patch-clamp analysis: advanced techniques, neuromethods, chap 14, vol 38, 2nd edn, Humana Press, pp 411–433. doi:10.1007/978-1-59745-492-6

  • Breckenridge L, Wilson R, Connolly P, Curtis A, Dow J, Blackshaw S, Wilkinson C (1995) Advantages of using microfabricated extracellular electrodes for in-vitro neuronal recording. J Neurosci Res 42(2):266–276

    Article  Google Scholar 

  • Bruggemann A, George M, Klau M, Beckler M, Steindl J, Behrends J, Fertig N (2003) High quality ion channel analysis on a chip with the NPC (c) technology. Assay Drug Dev Technol 1(5):665–673

    Article  Google Scholar 

  • Camerino DC, Tricarico D, Desaphy JF (2007) Ion channel pharmacology. Neurotherapeutics 4(2):184–198

    Article  Google Scholar 

  • Cannon SC (2007) Physiologic principles underlying ion channelopathies. Neurotherapeutics 4(2):174–183

    Article  Google Scholar 

  • Charrier A, Martinez D, Monette R, Comas T, Movileanu R, Py C, Denhoff M, Krantis A, Mealing G (2010) Cell placement and guidance on substrates for neurochip interfaces. Biotechnol Bioeng 105(2):368–373

    Article  Google Scholar 

  • Chen CY, Liu KT, Jong DS, Wo AM (2007) Hourglass-shaped aperture for cellular electrophysiological study. Appl Phys Lett 91(12). doi:10.1063/1.2783192

  • Chen CY, Tu TY, Chen CH, Jong DS, Wo AM (2009) Patch clamping on plane glass-fabrication of hourglass aperture and high-yield ion channel recording. Lab Chip 9(16):2370–2380. doi:10.1039/b901025d

    Article  Google Scholar 

  • DeMarse T, Wagenaar D, Blau A, Potter S (2001) The neurally controlled animat: biological brains acting with simulated bodies. Auton Robots 11(3):305–310

    Article  MATH  Google Scholar 

  • Dunlop J, Bowlby M, Peri R, Vasilyev D, Arias R (2008) High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat Rev Drug Discov 7(4):358–368. doi:10.1038/nrd2552

    Article  Google Scholar 

  • Eversmann B, Jenkner M, Hofmann F, Paulus C, Brederlow R, Holzapfl B, Fromherz P, Merz M, Brenner M, Schreiter M, Gabl R, Plehnert K, Steinhauser M, Eckstein G, Schmitt-Landsiedel D, Thewes R (2003) A 128 × 128 CMOS biosensor array for extracellular recording of neural activity. IEEE J Solid State Circ 38(12):2306–2317. doi:10.1109/JSSC.2003.819174

    Google Scholar 

  • Fertig N, Klau M, George M, Blick R, Behrends J (2002) Activity of single ion channel proteins detected with a planar microstructure. Appl Phys Lett 81(25):4865–4867. doi:10.1063/1.1531228

    Article  Google Scholar 

  • Graves T, Hanna M (2005) Neurological channelopathies. Postgrad Med 81(951):20–32. doi:10.1136/pgmj.2004.022012

    Article  Google Scholar 

  • Gross G, Rhoades B, Azzazy H, Wu M (1995) The use of neuronal networks on multielectrode arrays as biosensors. Biosens Bioelectron 10(6–7):553–567

    Article  Google Scholar 

  • Hamill O, Marty A, Neher E, Sakmann B, Sigworth F (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Archiv 391(2):85–100

    Article  Google Scholar 

  • Hatta S, Sakamoto J, Horio Y (2002) Ion channels and diseases. Med Electron Microsc 35(3):117–126

    Article  Google Scholar 

  • Hubner C, Jentsch T (2002) Ion channel diseases. Hum Mol Genet 11(20):2435–2445

    Article  Google Scholar 

  • Jimbo Y, Tateno T, Robinson H (1999) Simultaneous induction of pathway-specific potentiation and depression in networks of cortical neurons. Biophys J 76(2):670–678

    Article  Google Scholar 

  • Kandel E, Schwartz J, Jessell T (2000) Principles of neural science, 4th edn. McGraw-Hill Education, New York

    Google Scholar 

  • Klemic K, Klemic J, Sigworth F (2005) An air-molding technique for fabricating PDMS planar patch-clamp electrodes. Pflugers Archiv 449(6):564–572. doi:10.1007/s00424-004-1360-8

    Article  Google Scholar 

  • Lau AY, Hung PJ, Wu AR, Lee LP (2006) Open-access microfluidic patch-clamp array with raised lateral cell trapping sites. Lab Chip 6(12):1510–1515. doi:10.1039/b608439g

    Article  Google Scholar 

  • Lehnert T, Nguyen DMT, Baldi L, Gijs MAM (2007) Glass reflow on 3-dimensional micro-apertures for electrophysiological measurements on-chip. Microfluid Nanofluid 3(1):109–117. doi:10.1007/s10404-006-0111-x

    Article  Google Scholar 

  • Levis RA, Rae JL (1998) Low-noise patch-clamp techniques. In: Conn PM (ed) Ion channels, Pt B, methods in enzymology, vol 293. Academic Press Inc., San Diego, CA, pp 218–266

    Google Scholar 

  • Li M, Lester H (2001) Ion channel diseases of the central nervous system. CNS Drug Rev 7(2):214–240

    Article  Google Scholar 

  • Matthews B, Judy J (2006) Design and fabrication of a micromachined planar patch-clamp substrate with integrated microfluidics for single-cell measurements. IEEE ASME J Microelectromech Syst 15(1):214–222

    Article  Google Scholar 

  • Mealing G, Bani-Yaghoub M, Tremblay R, Monette R, Mielke J, Voicu R, Py C, Barjovanu R, Faid K (2005) Application of polymer microstructures with controlled surface chemistries as a platform for creating and interfacing with synthetic neural networks. In: Proceedings of the IEEE international joint conference on neural networks 2005, vol 5, pp 3116–3120. doi:10.1109/IJCNN.2005.1556425

  • Mourzina Y, Kaliaguine D, Schulte P, Offenhaeusser A (2006) Patterning chemical stimulation of reconstructed neuronal networks. Anal Chim Acta 575(2):281–289. doi:10.1016/j.aca.2006.06.010

    Article  Google Scholar 

  • Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle-fibers. Nature 260(5554):799–802

    Article  Google Scholar 

  • Nicholls J, Hernandez U (1989) Growth and synapse formation by identified leech neurons in culture—a review. Q J Exp Physiol Cogn Med Sci 74(7):965–973

    Google Scholar 

  • Novak J, Wheeler B (1986) Recording from the aplysia abdominal-ganglion with a planar microelectrode array. IEEE Trans Biomed Eng 33(2):196–202

    Article  Google Scholar 

  • Oliva A, James C, Kingman C, Craighead H, Banker G (2003) Patterning axonal guidance molecules using a novel strategy for microcontact printing. Neurochem Res 28(11):1639–1648

    Article  Google Scholar 

  • Ong WL, Tang KC, Agarwal A, Nagarajan R, Luo LW, Yobas L (2007) Microfluidic integration of substantially round glass capillaries for lateral patch clamping on chip. Lab Chip 7(10):1357–1366. doi:10.1039/b707439e

    Article  Google Scholar 

  • Pandey S, Mehrotra R, Wykosky S, White M (2004) Characterization of a MEMS BioChip for planar patch-clamp recording. Solid State Electron 48(10–11):2061–2066. doi:10.1016/j.sse.2004.05.072

    Article  Google Scholar 

  • Pearce TM, Williams JC (2007) Microtechnology: meet neurobiology. Lab Chip 7(1):30–40. doi:10.1039/b612856b

    Article  Google Scholar 

  • Perkins K (2006) Cell-attached voltage-clamp and current-clamp recording and stimulation techniques in brain slices. J Neurosci Methods 154(1–2):1–18. doi:10.1016/j.jneumeth.2006.02.010

    Article  MathSciNet  Google Scholar 

  • Peterman M, Mehenti N, Bilbao K, Lee C, Leng T, Noolandi J, Bent S, Blumenkranz M, Fishman H (2003) The artificial synapse chip: a flexible retinal interface based on directed retinal cell growth and neurotransmitter stimulation. Artif Organs 27(11):975–985

    Article  Google Scholar 

  • Picollet-D’hahan N, Sordel T, Garnier-Raveaud S, Sauter F, Ricoul F, Pudda C, Marcel F, Chatelain F (2004) A silicon-based “Multi Patch” device for ion channel current sensing. Sens Lett 2(2):91–94. doi:10.1166/sl.2004.031

    Article  Google Scholar 

  • Roberts W, Almers W (1992) Patch voltage clamping with low-resistance seals—loose patch clamp. Meth Enzymol 207:155–176

    Article  Google Scholar 

  • Sakmann B, Neher E (1984) Patch clamp techniques for studying ionic channels in excitable-membranes. Annu Rev Physiol 46:455–472

    Article  Google Scholar 

  • Sigworth F, Klemic K (2002) Patch clamp on a chip. Biophys J 82(6):2831–2832

    Article  Google Scholar 

  • Sordel T, Garnier-Raveaud S, Sauter F, Pudda C, Marcel F, De~Waard M, Arnoult C, Vivaudou M, Chatelain F, Picollet-D’hahan N (2006) Hourglass SiO2 coating increases the performance of planar patch-clamp. J Biotechnol 125(1):142–154. doi:10.1016/j.jbiotec.2006.02.008

    Google Scholar 

  • Stett A, Bucher V, Burkhardt C, Weber U, Nisch W (2003a) Patch-clamping of primary cardiac cells with micro-openings in polyimide films. Med Biol Eng Comput 41(2):233–240

    Article  Google Scholar 

  • Stett A, Burkhardt C, Weber U, van Stiphout P, Knott T (2003b) Cytocentering: a novel technique enabling automated cell-by-cell patch clamping with the CytoPatch (TM) chip. Recept Channel 9(1):59–66. doi:10.1080/10606820390177749

    Article  Google Scholar 

  • Su F, Chakrabarty K, Fair R (2006) Microfluidics-based biochips: technology issues, implementation platforms, and design-automation challenges. IEEE Trans Comput Aided Des Integr Circ Syst 25(2):211–223. doi:10.1109/TCAD.2005.855956

    Article  Google Scholar 

  • Taylor A, Blurton-Jones M, Rhee S, Cribbs D, Cotman C, Jeon N (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2(8):599–605. doi:10.1038/NMETH777

    Article  Google Scholar 

  • Wang X, Li M (2003) Automated electrophysiology: high throughput of art. Assay Drug Dev Technol 1(5):695–708

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Alberti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alberti, M., Snakenborg, D., Lopacinska, J.M. et al. Characterization of a patch-clamp microchannel array towards neuronal networks analysis. Microfluid Nanofluid 9, 963–972 (2010). https://doi.org/10.1007/s10404-010-0619-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0619-y

Keywords

Navigation