Skip to main content

Metabonomics and Toxicology

  • Protocol
  • First Online:
Metabonomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1277))

Abstract

Being an emerging field of “omics” research, metabonomics has been increasingly used in toxicological studies mostly because this technology has the ability to provide more detailed information to elucidate mechanism of toxicity. As an interdisciplinary field of science, metabonomics combines analytical chemistry, bioinformatics, statistics, and biochemistry. When applied to toxicology, metabonomics also includes aspects of patho-biochemistry, systems biology, and molecular diagnostics. During a toxicological study, the metabolic changes over time and dose after chemical treatment can be monitored. Therefore, the most important use of this emerging technology is the identification of signatures of toxicity—patterns of metabolic changes predictive of a hazard manifestation. This chapter summarizes the current state of metabonomics technology and its applications in various areas of toxicological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartung T (2009) Toxicology for the twenty-first century. Nature 460:208–212

    Article  CAS  PubMed  Google Scholar 

  2. Davis M, Boekelheide K, Boverhof DR et al (2013) The new revolution in toxicology: the good, the bad, and the ugly. Ann N Y Acad Sci 1278:11–24

    Article  PubMed  Google Scholar 

  3. Hartung T, McBride M (2011) Food for thought… on mapping the human toxome. ALTEX 28:83–93

    Article  PubMed  Google Scholar 

  4. Kleensang A, Maertens A, Rosenberg M et al. (2014) t4 Workshop Report: Pathways of toxicity. ALTEX 31:53–61

    Google Scholar 

  5. Hartung T (2010) Food for thought… on alternative methods for chemical safety testing. ALTEX 27:3–14

    PubMed  Google Scholar 

  6. Ramirez T, Daneshian M, Kamp H et al (2012) Metabolomics in toxicology and preclinical research. ALTEX 30:209–225

    Article  Google Scholar 

  7. Hartung T (2008) Food for thought… on animal tests. ALTEX 25:3–9

    PubMed  Google Scholar 

  8. Bracken MB (2009) Why animal studies are often poor predictors of human reactions to exposure. J R Soc Med 102:120–122

    Article  PubMed Central  PubMed  Google Scholar 

  9. Bucher JR (2002) The national toxicology program rodent bioassay. Ann N Y Acad Sci 982:198–207

    Article  CAS  PubMed  Google Scholar 

  10. Bottini AA, Hartung T (2009) Food for thought… on economics of animal testing. ALTEX 26:3–16

    PubMed  Google Scholar 

  11. Basketter DA, Clewell H, Kimber I et al (2012) t (4) report a roadmap for the development of alternative (non-animal) methods for systemic toxicity testing. ALTEX 29:3–91

    Article  PubMed  Google Scholar 

  12. Stevens JL (2006) Future of toxicology mechanisms of toxicity and drug safety: where do we go from here? Chem Res Toxicol 19:1393–1401

    Article  CAS  PubMed  Google Scholar 

  13. Hartung T (2013) Food for thought… look back in anger: what clinical studies tell us about preclinical work. ALTEX 30:275

    Article  PubMed Central  PubMed  Google Scholar 

  14. Hartung T, Luechtefeld T, Maertens A et al (2013) Food for thought… integrated testing strategies for safety assessments. ALTEX 30:3

    Article  PubMed Central  PubMed  Google Scholar 

  15. Hartung T, van Vliet E, Jaworska J et al (2012) Food for thought…systems toxicology. ALTEX 29:119

    Article  PubMed  Google Scholar 

  16. van Vliet E (2011) Current standing and future prospects for the technologies proposed to transform toxicity testing in the 21st century. ALTEX 28:17

    Article  PubMed  Google Scholar 

  17. Robertson DG (2005) Metabonomics in toxicology: a review. Toxicol Sci 85:809–822

    Article  CAS  PubMed  Google Scholar 

  18. Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189

    Article  CAS  PubMed  Google Scholar 

  19. Nicholson JK, Connelly J, Lindon JC et al (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1:153–161

    Article  CAS  PubMed  Google Scholar 

  20. Holmes E, Wilson ID, Nicholson JK (2008) Metabolic phenotyping in health and disease. Cell 134:714–717

    Article  CAS  PubMed  Google Scholar 

  21. Nicholson JK (2006) Global systems biology, personalized medicine and molecular epidemiology. Mol Syst Biol 2:52. doi:10.1038/msb4100095

    Article  PubMed Central  PubMed  Google Scholar 

  22. Fiehn O (2002) Metabolomics: the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  CAS  PubMed  Google Scholar 

  23. Ramsden JJ (2004) Metabolomics and metabonomics. In: Bioinformatics: an introduction. Springer Netherlands, p 221–226. doi:10.1007/978-1-4020-2950-9_15

  24. Friedrich N (2012) Metabolomics in diabetes research. J Endocrinol 215:29–42

    Article  CAS  PubMed  Google Scholar 

  25. Koal T, Deigner HP (2010) Challenges in mass spectrometry based targeted metabolomics. Curr Mol Med 10:216–226

    Article  CAS  PubMed  Google Scholar 

  26. Wang W, Zhang W, Liu J et al (2013) Metabolomic changes in follicular fluid induced by soy isoflavones administered to rats from weaning until sexual maturity. Toxicol Appl Pharmacol 269:280–289

    Article  CAS  PubMed  Google Scholar 

  27. Crockford DJ, Maher AD, Ahmadi KR et al (2008) 1H NMR and UPLC-MSE statistical heterospectroscopy: characterization of drug metabolites (Xenometabolome) in epidemiological studies. Anal Chem 80:6835–6844

    Article  CAS  PubMed  Google Scholar 

  28. Dunn WB, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. Trends Anal Chem 24:285–294

    Article  CAS  Google Scholar 

  29. Dunn WB, Bailey NJ, Johnson HE (2005) Measuring the metabolome: current analytical technologies. Analyst 130:606–625

    Article  CAS  PubMed  Google Scholar 

  30. Bouhifd M, Hartung T, Hogberg HT et al (2013) Review: toxicometabolomics. J Appl Toxicol 33:1365–1383

    Article  CAS  PubMed  Google Scholar 

  31. Southam AD, Lange A, Hines A et al (2011) Metabolomics reveals target and off-target toxicities of a model organophosphate pesticide to roach (Rutilus rutilus): implications for biomonitoring. Environ Sci Technol 45:3759–3767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Begriche K, Massart J, Robin MA et al (2011) Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol 54:773–794

    Article  CAS  PubMed  Google Scholar 

  33. Lin S, Yang Z, Liu H et al (2011) Metabolomic analysis of liver and skeletal muscle tissues in C57BL/6J and DBA/2J mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Mol Biosyst 7:1956–1965

    Article  CAS  PubMed  Google Scholar 

  34. Li F, Lu J, Ma X (2011) Profiling the reactive metabolites of xenobiotics using metabolomic technologies. Chem Res Toxicol 24:744–751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Griffiths WJ, Koal T, Wang Y et al (2010) Targeted metabolomics for biomarker discovery. Angew Chem Int Ed Engl 49:5426–5445

    Article  CAS  PubMed  Google Scholar 

  36. Chen J, Zhang X, Cao R et al (2011) Serum 27-nor-5beta-cholestane-3,7,12,24,25 pentol glucuronide discovered by metabolomics as potential diagnostic biomarker for epithelium ovarian cancer. J Proteome Res 10:2625–2632

    Article  CAS  PubMed  Google Scholar 

  37. Lucio M, Fekete A, Weigert C et al (2010) Insulin sensitivity is reflected by characteristic metabolic fingerprints: a Fourier transform mass spectrometric non-targeted metabolomics approach. PLoS One 5:e13317

    Article  PubMed Central  PubMed  Google Scholar 

  38. Issaq HJ, Waybright TJ, Veenstra TD (2011) Cancer biomarker discovery: opportunities and pitfalls in analytical methods. Electrophoresis 32:967–975

    Article  CAS  PubMed  Google Scholar 

  39. Woo HM, Kim KM, Choi MH et al (2009) Mass spectrometry based metabolomic approaches in urinary biomarker study of women’s cancers. Clin Chim Acta 400:63–69

    Article  CAS  PubMed  Google Scholar 

  40. Wang X, Zhang A, Han Y et al (2012) Urine metabolomics analysis for biomarker discovery and detection of jaundice syndrome in patients with liver disease. Mol Cell Proteomics 11:370–380

    Article  PubMed Central  PubMed  Google Scholar 

  41. Hollywood K, Brison DR, Goodacre R (2006) Metabolomics: current technologies and future trends. Proteomics 6:4716–4723

    Article  CAS  PubMed  Google Scholar 

  42. Kim HK, Choi YH, Verpoorte R (2011) NMR-based plant metabolomics: where do we stand, where do we go? Trends Biotechnol 29:267–275

    Article  CAS  PubMed  Google Scholar 

  43. Scalbert A, Brennan L, Fiehn O et al (2009) Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics 5:435–458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Wishart DS (2008) Quantitative metabolomics using NMR. Trends Anal Chem 27:228–237

    Article  CAS  Google Scholar 

  45. Hanzlik RP, Bhatia P, Stitt R et al (1980) Biotransformation and excretion of methylcyclopentadienyl manganese tricarbonyl in the rat. Drug Metab Dispos 8:428–433

    CAS  PubMed  Google Scholar 

  46. Fukuhara K, Ohno A, Ando Y et al (2011) A 1H NMR-based metabolomics approach for mechanistic insight into acetaminophen-induced hepatotoxicity. Drug Metab Pharmacokinet 26:399–406

    Article  CAS  PubMed  Google Scholar 

  47. Liu X, Zhang L, You L et al (2011) Toxicological responses to acute mercury exposure for three species of Manila clam Ruditapes philippinarum by NMR-based metabolomics. Environ Toxicol Pharmacol 31:323–332

    Article  PubMed  Google Scholar 

  48. Barba I, Fernandez-Montesinos R, Garcia-Dorado D et al (2008) Alzheimer’s disease beyond the genomic era: nuclear magnetic resonance (NMR) spectroscopy-based metabolomics. J Cell Mol Med 12:1477–1485

    Article  CAS  PubMed  Google Scholar 

  49. Neerathilingam M, Volk DE, Sarkar S et al (2010) 1H NMR-based metabonomic investigation of tributyl phosphate exposure in rats. Toxicol Lett 199:10–16

    Article  CAS  PubMed  Google Scholar 

  50. Beger RD, Sun J, Schnackenberg LK (2010) Metabolomics approaches for discovering biomarkers of drug-induced hepatotoxicity and nephrotoxicity. Toxicol Appl Pharmacol 243:154–166

    Article  CAS  PubMed  Google Scholar 

  51. Serkova NJ, Van Rheen Z, Tobias M et al (2008) Utility of magnetic resonance imaging and nuclear magnetic resonance-based metabolomics for quantification of inflammatory lung injury. Am J Physiol Lung Cell Mol Physiol 295:L152–L161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Griffin JL, Kauppinen RA (2007) A metabolomics perspective of human brain tumours. FEBS J 274:1132–1139

    Article  CAS  PubMed  Google Scholar 

  53. Kaddurah-Daouk R, Kristal BS, Weinshilboum RM (2008) Metabolomics: a global biochemical approach to drug response and disease. Annu Rev Pharmacol Toxicol 48:653–683

    Article  CAS  PubMed  Google Scholar 

  54. Roux A, Lison D, Junot C et al (2011) Applications of liquid chromatography coupled to mass spectrometry-based metabolomics in clinical chemistry and toxicology: a review. Clin Biochem 44:119–135

    Article  CAS  PubMed  Google Scholar 

  55. Patterson AD, Lanz C, Gonzalez FJ et al (2010) The role of mass spectrometry-based metabolomics in medical countermeasures against radiation. Mass Spectrom Rev 29:503–521

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Singh OV (2006) Proteomics and metabolomics: the molecular make-up of toxic aromatic pollutant bioremediation. Proteomics 6:5481–5492

    Article  CAS  PubMed  Google Scholar 

  57. Chen C, Gonzalez FJ, Idle JR (2007) LC-MS-based metabolomics in drug metabolism. Drug Metab Rev 39:581–597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Crockford DJ, Holmes E, Lindon JC et al (2006) Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets: application in metabonomic toxicology studies. Anal Chem 78:363–371

    Article  CAS  PubMed  Google Scholar 

  59. West PR, Weir AM, Smith AM et al (2010) Predicting human developmental toxicity of pharmaceuticals using human embryonic stem cells and metabolomics. Toxicol Appl Pharmacol 247:18–27

    Article  CAS  PubMed  Google Scholar 

  60. Wang J, Reijmers T, Chen L et al (2009) Systems toxicology study of doxorubicin on rats using ultra performance liquid chromatography coupled with mass spectrometry based metabolomics. Metabolomics 5:407–418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Dunn WB, Wilson ID, Nicholls AW et al (2012) The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis 4:2249–2264

    Article  CAS  PubMed  Google Scholar 

  62. Fan TW-M (2012) Considerations of sample preparation for metabolomics investigation. In: the handbook of metabolomics. Springer, p 7–27

    Google Scholar 

  63. Lafaye A, Junot C, Gall BRL et al. (2003) Metabolite profiling in rat urine by liquid chromatography/electrospray ion trap mass spectrometry. Application to the study of heavy metal toxicity. Rapid Commun Mass Spectrom 17:2541–2549

    Google Scholar 

  64. Chen C, Krausz KW, Idle JR et al (2008) Identification of novel toxicity-associated metabolites by metabolomics and mass isotopomer analysis of acetaminophen metabolism in wild-type and Cyp2e1-null mice. J Biol Chem 283:4543–4559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Laaksonen R, Katajamaa M, Päivä H et al (2006) A systems biology strategy reveals biological pathways and plasma biomarker candidates for potentially toxic statin-induced changes in muscle. PLoS One 1:e97

    Article  PubMed Central  PubMed  Google Scholar 

  66. Teng Q, Huang W, Collette TW et al (2009) A direct cell quenching method for cell-culture based metabolomics. Metabolomics 5:199–208

    Article  CAS  Google Scholar 

  67. Prasad Maharjan R, Ferenci T (2003) Global metabolite analysis: the influence of extraction methodology on metabolome profiles of Escherichia coli. Anal Biochem 313:145–154

    Article  CAS  Google Scholar 

  68. Jackson JE (2005) A user’s guide to principal components. John Wiley & Sons, New York, NY

    Google Scholar 

  69. Kaufman L, Rousseeuw PJ (2009) Finding groups in data: an introduction to cluster analysis. John Wiley & Sons, New York, NY

    Google Scholar 

  70. Lutz U, Lutz RW, Lutz WK (2006) Metabolic profiling of glucuronides in human urine by LC-MS/MS and partial least-squares discriminant analysis for classification and prediction of gender. Anal Chem 78:4564–4571

    Article  CAS  PubMed  Google Scholar 

  71. Trygg J, Wold S (2002) Orthogonal projections to latent structures (O‐PLS). J Chemometrics 16:119–128

    Article  CAS  Google Scholar 

  72. Shockcor JP, Holmes E (2002) Metabonomic applications in toxicity screening and disease diagnosis. Curr Top Med Chem 2:35–51

    Article  CAS  PubMed  Google Scholar 

  73. Robertson DG, Reily MD, Sigler RE et al (2000) Metabonomics: evaluation of nuclear magnetic resonance (NMR) and pattern recognition technology for rapid in vivo screening of liver and kidney toxicants. Toxicol Sci 57:326–337

    Article  CAS  PubMed  Google Scholar 

  74. Van Vliet E, Morath S, Eskes C et al (2008) A novel in vitro metabolomics approach for neurotoxicity testing, proof of principle for methyl mercury chloride and caffeine. Neurotoxicology 29:1–12

    Article  PubMed  Google Scholar 

  75. Boudonck KJ, Mitchell MW, Német L et al (2009) Discovery of metabolomics biomarkers for early detection of nephrotoxicity. Toxicol Pathol 37:280–292

    Article  CAS  PubMed  Google Scholar 

  76. Vangala S, Tonelli A (2007) Biomarkers, metabonomics, and drug development: can inborn errors of metabolism help in understanding drug toxicity? AAPS J 9:E284–E297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Nicholls AW, Holmes E, Lindon JC et al (2001) Metabonomic investigations into hydrazine toxicity in the rat. Chem Res Toxicol 14:975–987

    Article  CAS  PubMed  Google Scholar 

  78. Sieber M, Hoffmann D, Adler M et al (2009) Comparative analysis of novel noninvasive renal biomarkers and metabonomic changes in a rat model of gentamicin nephrotoxicity. Toxicol Sci 109:336–349

    Article  CAS  PubMed  Google Scholar 

  79. Antoine D, Mercer A, Williams D et al (2009) Mechanism-based bioanalysis and biomarkers for hepatic chemical stress. Xenobiotica 39:565–577

    Article  CAS  PubMed  Google Scholar 

  80. Lujan R, Shigemoto R, Lopez-Bendito G (2005) Glutamate and GABA receptor signalling in the developing brain. Neuroscience 130:567–580

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hartung M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhao, L., Hartung, T. (2015). Metabonomics and Toxicology. In: Bjerrum, J. (eds) Metabonomics. Methods in Molecular Biology, vol 1277. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2377-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2377-9_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2376-2

  • Online ISBN: 978-1-4939-2377-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics