Skip to main content

Design of Primers and Probes for Quantitative Real-Time PCR Methods

  • Protocol
  • First Online:
PCR Primer Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1275))

Abstract

Design of primers and probes is one of the most crucial factors affecting the success and quality of quantitative real-time PCR (qPCR) analyses, since an accurate and reliable quantification depends on using efficient primers and probes. Design of primers and probes should meet several criteria to find potential primers and probes for specific qPCR assays. The formation of primer-dimers and other non-specific products should be avoided or reduced. This factor is especially important when designing primers for SYBR® Green protocols but also in designing probes to ensure specificity of the developed qPCR protocol. To design primers and probes for qPCR, multiple software programs and websites are available being numerous of them free. These tools often consider the default requirements for primers and probes, although new research advances in primer and probe design should be progressively added to different algorithm programs. After a proper design, a precise validation of the primers and probes is necessary. Specific consideration should be taken into account when designing primers and probes for multiplex qPCR and reverse transcription qPCR (RT-qPCR).

This chapter provides guidelines for the design of suitable primers and probes and their subsequent validation through the development of singlex qPCR, multiplex qPCR, and RT-qPCR protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Invitrogen (2008) Real-time PCR: from theory to practice. http://corelabs.cgrb.oregonstate.edu/sites/default/files/Real%20Time%20PCR.From%20Theory%20to%20Practice.pdf. Accessed 6 Nov 2013

  2. Rodríguez-Lázaro D, Hernández M (2013) Real time PCR in food science: introduction. Curr Issues Mol Biol 15:25–38

    PubMed  Google Scholar 

  3. Rosadas C, Cabral-Castro MJ, Vicente AC et al (2013) Validation of a quantitative real-time PCR assay for HTLV-1 proviral load in peripheral blood mononuclear cells. J Virol Methods 193:536–541

    Article  CAS  PubMed  Google Scholar 

  4. Holland PM, Abramson RD, Watson R et al (1991) Detection of specific polymerase chain reaction product by utilizing the 50–30 exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 88: 7276–7280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Heid CA, Stevens J, Livak KJ et al (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  CAS  PubMed  Google Scholar 

  6. Thornton B, Basu C (2011) Real-time PCR (qPCR) primer design using free online software. Biochem Mol Biol Educ 39:145–154

    Article  CAS  PubMed  Google Scholar 

  7. Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582

    Article  CAS  PubMed  Google Scholar 

  8. Qiagen (2010) Critical factors for successful real-time PCR. http://www.qiagen.com/es/resources/resourcedetail?id=f7efb4f4-fbcf-4b25-9315-c4702414e8d6&lang=en. Accessed 9 Nov 2013

  9. Yu Y, Lee C, Kim J et al (2005) Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 89:670–679

    Article  CAS  PubMed  Google Scholar 

  10. Raymaekers M, Smets R, Maes B et al (2009) Checklist for optimization and validation of real-time PCR assays. J Clin Lab Anal 23:145–151

    Article  CAS  PubMed  Google Scholar 

  11. Lim J, Shin SG, Lee S et al (2011) Design and use of group-specific primers and probes for real-time quantitative PCR. Front Environ Sci Eng 5:28–39

    Article  CAS  Google Scholar 

  12. Chuang LY, Cheng YH, Yang CH (2013) Specific primer design for the polymerase chain reaction. Biotechnol Lett 35:1541–1549

    Article  CAS  PubMed  Google Scholar 

  13. Hanna SE, Connor CJ, Wang HH (2005) Real-time polymerase chain reaction for the food microbiologist: technologies, applications, and limitations. J Food Sci 70:49–53

    Article  Google Scholar 

  14. Toouli CD, Turner DR, Grist SA et al (2000) The effect of cycle number and target size on polymerase chain reaction amplification of polymorphic repetitive sequences. Anal Biochem 280:324–326

    Article  CAS  PubMed  Google Scholar 

  15. McConlogue L, Brow MA, Innis MA (1988) Structure-independent DNA amplification by PCR using 7-deaza-20-deoxyguanosine. Nucleic Acids Res 16:9869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Mitsuhashi M (1996) Technical report: Part 1. Basic requirements for designing optimal oligonucleotide probe sequences. J Clin Lab Anal 10:277–284

    Article  CAS  PubMed  Google Scholar 

  17. Wittwer CT, Herrmann MG, Moss AA et al (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22:130–131

    CAS  PubMed  Google Scholar 

  18. Ririe KM, Rasmussen RP, Wittwer CT (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245:154–160

    Article  CAS  PubMed  Google Scholar 

  19. Wu JS, Lee C, Wu CC et al (2004) Primer design using genetic algorithm. Bioinformatics 20:1710–1717

    Article  CAS  PubMed  Google Scholar 

  20. Marchesi JR (2001) Primer design for PCR amplification of environmental DNA targets. In: Rochelle PA (ed) Environmental molecular microbiology: protocols and applications. Horizon Scientific Press, Wymondham, pp 43–54

    Google Scholar 

  21. Simonsson T, Pecinka P, Kubista M (1998) DNA tetraplex formation in the control region of c-myc. Nucleic Acids Res 26:1167–1172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Giulietti A, Overbergh L, Valckx D et al (2001) An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 25:386–401

    Article  CAS  PubMed  Google Scholar 

  23. Gunson RN, Collins TC, Carman WF (2006) Practical experience of high throughput real time PCR in the routine diagnostic virology setting. J Clin Virol 35:355–367

    Article  CAS  PubMed  Google Scholar 

  24. Saiki RK (1989) The design and optimization of the PCR. In: Erlich HA (ed) PCR technology: principles and applications for DNA amplification. McMillan Publishers (Stockton Press), New York, NY, pp 7–22

    Google Scholar 

  25. Kubista M, Andrade JM, Bengtsson M et al (2006) The real-time polymerase chain reaction. Mol Asp Med 27:95–125

    Article  CAS  Google Scholar 

  26. Polz MF, Cavanaugh CM (1998) Bias in template-to-product rations in multitemplate PCR. Appl Environ Microbiol 64:3724–3730

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Linhart C, Shamir R (2005) The degenerate primer design problem: theory and applications. J Comput Biol 12:431–456

    Article  CAS  PubMed  Google Scholar 

  28. Biorad (2013) qPCR assay design and optimization. http://www.bio-rad.com/en-es/applications-technologies/qpcr-assay-design-optimization. Accessed 24 Oct 2013

  29. Kalendar R, Lee D, Schulman AH (2011) Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis. Genomics 98:137–144

    Article  CAS  PubMed  Google Scholar 

  30. Abd-Elsalam KA (2003) Bioinformatic tools and guideline for PCR primer design. Afr J Biotechnol 2:91–95

    Article  CAS  Google Scholar 

  31. Fredman D, Jobs M, Strömqvist L et al (2004) DFold: PCR design that minimizes secondary structure and optimizes downstream genotyping applications. Hum Mutat 24:1–8

    Article  CAS  PubMed  Google Scholar 

  32. Nonis A, Scortegagna M, Nonis A et al (2011) PRaTo: a web-tool to select optimal primer pairs for qPCR. Biochem Biophys Res Commun 415:707–708

    Article  CAS  PubMed  Google Scholar 

  33. Gubelmann C, Gattiker A, Massouras A et al (2011) GETPrime: a gene- or transcript-specific primer database for quantitative real-time PCR. Database 2011:bar040. doi:10.1093/database/bar040

    Article  PubMed Central  PubMed  Google Scholar 

  34. Rychlik W (2007) OLIGO 7 primer analysis software. In: Yuryev A (ed) Methods in molecular biology, vol 402, PCR primer design. Humana, Totowa, NJ, pp 35–59

    Google Scholar 

  35. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  36. Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3: new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Untergasser A, Nijveen H, Rao X et al (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74

    Article  PubMed Central  PubMed  Google Scholar 

  38. Marshall OJ (2004) PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 20:2471–2472

    Article  CAS  PubMed  Google Scholar 

  39. Marshall OJ (2007) Graphical design of primers with PerlPrimer. In: Yuryev A (ed) Methods in molecular biology, vol 402, PCR primer design. Humana, Totowa, NJ, pp 403–414

    Google Scholar 

  40. Boutros PC, Okey AB (2004) PUNS: transcriptomic- and genomic-in silico PCR for enhanced primer design. Bioinformatics 20:2399–2400

    Article  CAS  PubMed  Google Scholar 

  41. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  42. Arvidsson S, Kwasniewski M, Riaño-Pachón DM et al (2008) QuantPrime: a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinformatics 9:465

    Article  PubMed Central  PubMed  Google Scholar 

  43. Ziesel AC, Chrenek MA, Wong PW (2008) MultiPriDe: automated batch development of quantitative real-time PCR primers. Nucleic Acids Res 36:3095–3100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Vijaya SR, Kumar K, Zavaljevski N et al (2010) A high-throughput pipeline for the design of real-time PCR signatures. BMC Bioinformatics 11:340

    Article  Google Scholar 

  45. Brosseau JP, Lucier JF, Lapointe E et al (2010) High-throughput quantification of splicing isoforms. RNA 16:442–449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Sobhy H, Colson P (2012) Gemi: PCR primers prediction from multiple alignments. Comp Funct Genomics 2012:783138. doi:10.1155/2012/783138

    Article  PubMed Central  PubMed  Google Scholar 

  47. Brodin J, Krishnamoorthy M, Athreya G et al (2013) A multiple-alignment based primer design algorithm for genetically highly variable DNA targets. BMC Bioinformatics 14:255

    Article  PubMed Central  PubMed  Google Scholar 

  48. Applied Biosystems (2004) Primer Express software version 3.0. getting started guide. http://www.bu.edu/picf/files/2010/11/Primer-express-30.pdf. Accessed 10 Jan 2005

  49. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. You FM, Huo N, Gu YQ et al (2009) ConservedPrimers 2.0: a high-throughput pipeline for comparative genome referenced intron-flanking PCR primer design and its application in wheat SNP discovery. BMC Bioinformatics 10:331

    Article  PubMed Central  PubMed  Google Scholar 

  51. You FM, Huo N, Gu YQ et al (2008) BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinformatics 9:253

    Article  PubMed Central  PubMed  Google Scholar 

  52. Riaz T, Shehzad W, Viari A et al (2011) ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res 39:e145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Wu X, Munroe DJ (2006) EasyExonPrimer: automated primer design for exon sequences. Appl Bioinformatics 5:119–120

    Article  CAS  PubMed  Google Scholar 

  54. Cao Y, Sun J, Zhu J et al (2010) PrimerCE: designing primers for cloning and gene expression. Mol Biotechnol 46:113–117

    Article  CAS  PubMed  Google Scholar 

  55. Lefever S, Vandesompele J, Speleman F et al (2009) RTPrimerDB: the portal for real-time PCR primers and probes. Nucleic Acids Res 37:D942–D945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Fredslund J (2008) DATFAP: a database of primers and homology alignments for transcription factors from 13 plant species. BMC Genomics 9:140

    Article  PubMed Central  PubMed  Google Scholar 

  57. Wang X, Spandidos A, Wang H et al (2012) PrimerBank: a PCR primer database for quantitative gene expression analysis, 2012 update. Nucleic Acids Res 40:D1144–D1149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Kalendar R, Lee D, Schulman AH (2009) FastPCR software for PCR primer and probe design and repeat search. Genes Genomes Genomics 3:1–14

    Google Scholar 

  59. Guerrero D, Bautista R, Villalobos DP et al (2010) AlignMiner: a web-based tool for detection of divergent regions in multiple sequence alignments of conserved sequences. Algorithms Mol Biol 5:24

    Article  PubMed Central  PubMed  Google Scholar 

  60. Taylor S, Wkem M, Dijkman G et al (2010) A practical approach to RT-qPCR: publishing data that conform to the MIQE guidelines. Methods 50:S1–S5

    Article  CAS  PubMed  Google Scholar 

  61. Lam CW, Mak CM (2013) Allele dropout caused by a non-primer-site SNV affecting PCR amplification: a call for next-generation primer design algorithm. Clin Chim Acta 421:208–212

    Article  CAS  PubMed  Google Scholar 

  62. Karlin S, Altschul SF (1990) Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc Natl Acad Sci U S A 87:2264–2268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  64. Mallona I, Weiss J, Egea-Cortines M (2011) pcrEfficiency: a web tool for PCR amplification efficiency prediction. BMC Bioinformatics 12:404

    Article  PubMed Central  PubMed  Google Scholar 

  65. Edwards KJ (2004) Performing real-time PCR. In: Edwards K, Logan J, Saunders N (eds) Real-time PCR, an essential guide. Horizon Bioscience, Norfolk, pp 71–83

    Google Scholar 

  66. Applied Biosystems (2010) Real-time PCR systems. Reagent guide. https://www3.appliedbiosystems.com/cms/groups/mcb_support/documents/generaldocuments/cms_052263.pdf. Accessed 7 Jul 2010

  67. Promega Corporation (2009) Protocols & applications guide. http://www.promega.com/~/media/files/resources/paguide/letter/paguide_us.pdf?la=en. Accessed 21 Oct 2013

  68. Pfaffl MW (2004) Quantification strategies in real-time PCR. In: Bustin SA (ed) A-Z of Quantitative PCR (IUL Biotechnology, No. 5). International University Line (IUL), San Diego, CA, pp 87–112

    Google Scholar 

  69. Lee MA, Squirell DJ, Leslie DL et al (2004) Homogeneous fluorescent chemistries for real-time PCR. In: Edwards K, Logan J, Saunders N (eds) Real-time PCR, an essential guide. Horizon Bioscience, Norfolk, pp 31–70

    Google Scholar 

  70. Life Technologies Corporation (2012) Real-time PCR handbook. http://find.lifetechnologies.com/Global/FileLib/qPCR/RealTimePCR_Handbook_Update_FLR.pdf. Accessed 6 Nov 2013

  71. Rajeevan MS, Ranamukhaarachchi DG, Vernon SD et al (2001) Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods 25:443–451

    Article  CAS  PubMed  Google Scholar 

  72. Kavanagh I, Jones G, Nayab SN (2011) Significance of controls and standard curves in PCR. In: Kennedy S, Oswald N (eds) PCR troubleshooting and optimization: the essential guide. Caister Academic Press, Norfolk, pp 67–78

    Google Scholar 

  73. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 1:29–45

    Article  Google Scholar 

  74. Gadkar VY, Filion M (2013) New developments in quantitative real-time polymerase chain reaction technology. Curr Issues Mol Biol 8:1–6

    Google Scholar 

  75. Ishii T, Sootome H, Shan L et al (2007) Validation of universal conditions for duplex quantitative reverse transcription polymerase chain reaction assays. Anal Biochem 362:201–212

    Article  CAS  PubMed  Google Scholar 

  76. Quellhorst, G., Rulli, S. (2008) A systematic guideline for developing the best real-time PCR primers. SABiosci. http://www.sabiosciences.com/manuals/RT2performanceWhitePaper.pdf. Accessed 26 Aug 2013

  77. Bustin SA, Nolan T (2004) Analysis of mRNA expression by real-time PCR. In: Edwards K, Logan J, Saunders N (eds) Real-time PCR, an essential guide. Horizon Bioscience, Norfolk, pp 125–184

    Google Scholar 

  78. Zhang J, Byrne CD (1999) Differential priming of RNA templates during cDNA synthesis markedly affects both accuracy and reproducibility of quantitative competitive reverse-transcriptase PCR. Biochem J 337:231–241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Lekanne Deprez RH, Fijnvandraat AC, Ruijter JM et al (2002) Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green I depends on cDNA synthesis conditions. Anal Biochem 307:63–69

    Article  CAS  PubMed  Google Scholar 

  80. VanGuilder HD, Vrana KE, Freeman WM (2008) Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 44:619–626

    Article  CAS  PubMed  Google Scholar 

  81. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  82. Wang X, Seed B (2003) A PCR primer bank for quantitative gene expression analysis. Nucleic Acids Res 31:e154

    Article  PubMed Central  PubMed  Google Scholar 

  83. Applied Biosystems (2008) Guide to performing relative quantitation of gene expression using real-time quantitative PCR. http://www3.appliedbiosystems.com/cms/groups/mcb_support/documents/generaldocuments/cms_042380.pdf. Accessed 2 Jun 2008

  84. Bauer P, Rolfs A, Regitz-Zagrosek V et al (1997) Use of manganese in RT-PCR eliminates PCR artefacts resulting from DNase I digestion. Biotechniques 22:1128–1132

    CAS  PubMed  Google Scholar 

  85. Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  CAS  PubMed  Google Scholar 

  86. Rodríguez A (2012) Desarrollo de métodos de PCR en tiempo real para la detección y cuantificación de mohos productores de micotoxinas en alimentos. Doctoral Thesis. University of Extremadura, Spain

    Google Scholar 

  87. Sayers EW, Barrett T, Benson DA et al (2012) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 40:D13–D25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Cui W, Taub DD, Gardner K (2007) qPrimerDepot: a primer database for quantitative real time PCR. Nucleic Acids Res 35:D805–D809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support of this work by projects “AGL2010-21623” and “Carnisenusa CSD2007-00016—Consolider Ingenio 2010” of the Spanish Government and GR10162 of the Government of Extremadura and FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María J. Andrade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rodríguez, A., Rodríguez, M., Córdoba, J.J., Andrade, M.J. (2015). Design of Primers and Probes for Quantitative Real-Time PCR Methods. In: Basu, C. (eds) PCR Primer Design. Methods in Molecular Biology, vol 1275. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2365-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2365-6_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2364-9

  • Online ISBN: 978-1-4939-2365-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics