Skip to main content

Chemical Genetic Screens Using Arabidopsis thaliana Seedlings Grown on Solid Medium

  • Protocol
  • First Online:
Chemical Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1263))

Abstract

Genetic screening has been a powerful tool in identifying new genes in a pathway of interest (forward genetics) or attributing function to a particular gene via mutagenesis (reverse genetics). Small molecule-based chemical genetics is increasingly adapted in Arabidopsis research as a tool for similar purposes, i.e., to identify genes involved in certain biological processes and to dissect the biological roles of a gene. Chemical genetic screens have been successful in circumventing genetic redundancy to assign biological roles to a gene family as well as novel functions for well-known genes. Here, we describe how to screen Arabidopsis seedlings grown on solid medium with chemical compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meyerowitz EM (1989) Arabidopsis, a useful weed. Cell 56:263–269

    Article  CAS  PubMed  Google Scholar 

  2. Schultz EA, Haughn GW (1991) LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell 3:771–781

    Article  PubMed Central  PubMed  Google Scholar 

  3. Weigel D et al (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859

    Article  CAS  PubMed  Google Scholar 

  4. Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495–500

    Article  CAS  PubMed  Google Scholar 

  5. Flachowsky H et al (2010) Overexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes. Planta 231:251–263

    Article  CAS  PubMed  Google Scholar 

  6. Radhamony RN, Prasad AM, Srinivasan R (2005) T-DNA insertional mutagenesis in Arabidopsis: a tool for functional genomics. Electron J Biotechnol 8(1). http://www.ejbiotechnology.info/content/vol8/issue1/full/4/

  7. Okamoto M et al (2013) Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proc Natl Acad Sci U S A 110:12132–12137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Park SY et al (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Robert S et al (2008) Endosidin1 defines a compartment involved in endocytosis of the brassinosteroid receptor BRI1 and the auxin transporters PIN2 and AUX1. Proc Natl Acad Sci U S A 105:8464–8469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Drakakaki G et al (2011) Clusters of bioactive compounds target dynamic endomembrane networks in vivo. Proc Natl Acad Sci U S A 108:17850–17855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. He W et al (2011) A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell 23:3944–3960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Knoth C et al (2009) The synthetic elicitor 3,5-dichloroanthranilic acid induces NPR1-dependent and NPR1-independent mechanisms of disease resistance in Arabidopsis. Plant Physiol 150:333–347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Dinh TT et al (2013) Generation of a luciferase-based reporter for CHH and CG DNA methylation in Arabidopsis thaliana. Silence 4:1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Dinh TT, Gao L, Liu X, Chen X (2014) DNA topoisomerase IA promotes transcriptional silencing of transposable elements through DNA methylation and histone lysine 9 dimethylation in Arabidopsis. PLoS Genet 10:e1004446

    Article  PubMed Central  PubMed  Google Scholar 

  15. Dalmay T et al (2000) An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101:543–553

    Article  CAS  PubMed  Google Scholar 

  16. Mourrain P et al (2000) Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101:533–542

    Article  CAS  PubMed  Google Scholar 

  17. Peragine A et al (2004) SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 18:2368–2379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Dinh TT et al (2014) Genetic screens for floral mutants in Arabidopsis thaliana: enhancers and suppressors. Methods Mol Biol 1110:127–156

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

Research in the Chen lab is supported by funds from Howard Hughes Medical Institute, Gordon and Betty Moore Foundation (GBMF3046), National Institutes of Health (GM061146), and National Institutes of Food and Agriculture (2010-04209). T.T.D. was supported by the National Science Foundation ChemGen IGERT program (DGE0504249) and NIH NIAID, Molecular and Cellular Immunobiology (5T32 AI07290) fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dinh, T.T., Chen, X. (2015). Chemical Genetic Screens Using Arabidopsis thaliana Seedlings Grown on Solid Medium. In: Hempel, J., Williams, C., Hong, C. (eds) Chemical Biology. Methods in Molecular Biology, vol 1263. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2269-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2269-7_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2268-0

  • Online ISBN: 978-1-4939-2269-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics