Skip to main content

Single-Molecule FRET Characterization of RNA Remodeling Induced by an Antitermination Protein

  • Protocol
  • First Online:
RNA Remodeling Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1259))

Abstract

Single-molecule Förster Resonance Energy Transfer (smFRET) is a useful technique to probe conformational changes within bio-macromolecules. Here, we introduce how to perform smFRET measurements in solution to investigate RNA remodeling and RNA–protein interactions. In particular, we focus on how the close-to-open transition of an antiterminator hairpin is influenced by the binding of the antitermination protein and the competition by oligonucleotides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weiss S (2000) Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nat Struct Biol 7:724–729

    Article  CAS  PubMed  Google Scholar 

  2. Felekyan S, Sanabria H, Kalinin S et al (2013) Analyzing Forster resonance energy transfer with fluctuation algorithms. Methods Enzymol 519:39–85

    Article  CAS  PubMed  Google Scholar 

  3. Clerte C, Declerck N, Margeat E (2013) Competitive folding of anti-terminator/terminator hairpins monitored by single molecule FRET. Nucleic Acids Res 41:2632–2643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. van Tilbeurgh H, Declerck N (2001) Structural insights into the regulation of bacterial signalling proteins containing PRDs. Curr Opin Struct Biol 11:685–693

    Article  PubMed  Google Scholar 

  5. Aymerich S, Steinmetz M (1992) Specificity determinants and structural features in the RNA target of the bacterial antiterminator proteins of the BglG/SacY family. Proc Natl Acad Sci U S A 89:10410–10414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Schnetz K, Stulke J, Gertz S et al (1996) LicT, a Bacillus subtilis transcriptional antiterminator protein of the BglG family. J Bacteriol 178:1971–1979

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Johnson IaS MTZ (2010) Molecular probes handbook. A guide to fluorescent probes and labeling technologies, 11th ed

    Google Scholar 

  8. Van Tilbeurgh H, Le Coq D, Declerck N (2001) Crystal structure of an activated form of the PTS regulation domain from the LicT transcriptional antiterminator. EMBO J 20:3789–3799

    Article  PubMed Central  PubMed  Google Scholar 

  9. Declerck N, Vincent F, Hoh F et al (1999) RNA recognition by transcriptional antiterminators of the BglG/SacY family: functional and structural comparison of the CAT domain from SacY and LicT. J Mol Biol 294:389–402

    Article  CAS  PubMed  Google Scholar 

  10. Kapanidis AN, Lee NK, Laurence TA et al (2004) Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. Proc Natl Acad Sci U S A 101:8936–8941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kapanidis AN, Laurence TA, Lee NK et al (2005) Alternating-laser excitation of single molecules. Acc Chem Res 38:523–533

    Article  CAS  PubMed  Google Scholar 

  12. Kapanidis AN, Heilemann M, Margeat E, Kong X, Nir E, Weiss S (2008) Alternating-laser excitation of single molecules. In: Selvin PR, Ha T (eds) Single-molecule techniques: a laboratory manual. CSHL Press, New York, pp 85–119

    Google Scholar 

  13. Proudnikov D, Mirzabekov A (1996) Chemical methods of DNA and RNA fluorescent labeling. Nucleic Acids Res 24:4535–4542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Persson T, Willkomm DK, Hartmann RK (2005) T4 RNA ligase. In: Bindereif A, Schön A, Wethof E, Hartmann RK (eds) Handbook of RNA biochemistry. Wiley, Weinheim, pp 53–74

    Chapter  Google Scholar 

  15. Ha T (2001) Single-molecule fluorescence resonance energy transfer. Methods 25:78–86

    Article  CAS  PubMed  Google Scholar 

  16. Clegg RM (1992) Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol 211:353–388

    Article  CAS  PubMed  Google Scholar 

  17. Holden SJ, Uphoff S, Hohlbein J et al (2010) Defining the limits of single-molecule FRET resolution in TIRF microscopy. Biophys J 99:3102–3111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Eggeling CBS, Brand L, Fries JR, Schaffer J, Volkmer A, Seidel CA (2001) Data registration and selective single-molecule analysis using multi-parameter fluorescence detection. J Biotechnol 13:163–180

    Article  Google Scholar 

  19. Lee NK, Kapanidis AN, Wang Y, Michalet X, Mukhopadhyay J, Ebright RH, Weiss S (2005) Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys J 88:2939–2943

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hendrix J, Lamb DC (2013) Pulsed interleaved excitation: principles and applications. Methods Enzymol 518:205–243

    Article  CAS  PubMed  Google Scholar 

  21. Olofsson L, Margeat E (2013) Pulsed interleaved excitation fluorescence spectroscopy with a supercontinuum source. Opt Express 21:3370–3378

    Article  CAS  PubMed  Google Scholar 

  22. Nir E, Michalet X, Hamadani KM et al (2006) Shot-noise limited single-molecule FRET histograms: comparison between theory and experiments. J Phys Chem B 110:22103–22124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5:507–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Vogelsang J, Kasper R, Steinhauer C et al (2008) A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew Chem Int Ed Engl 47:5465–5469

    Article  CAS  PubMed  Google Scholar 

  25. Ha T, Tinnefeld P (2012) Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu Rev Phys Chem 63:595–617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Yang Y, Declerck N, Manival X et al (2002) Solution structure of the LicT-RNA antitermination complex: CAT clamping RAT. EMBO J 21:1987–1997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Agence Nationale de la Recherche (ANR 2010 BLAN 1525 01 to E.M.), a “Chercheur d’Avenir” grant from the Region Languedoc Roussillon to E.M., the GIS “IBiSA: Infrastructures en Biologie Sante et Agronomie” and a postdoctoral grant from the Université Montpellier I to S.A.-B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Margeat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ait-Bara, S., Clerté, C., Margeat, E. (2015). Single-Molecule FRET Characterization of RNA Remodeling Induced by an Antitermination Protein. In: Boudvillain, M. (eds) RNA Remodeling Proteins. Methods in Molecular Biology, vol 1259. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2214-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2214-7_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2213-0

  • Online ISBN: 978-1-4939-2214-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics