Skip to main content

Autoshaping Memory Formation and Retention Loss: Are Serotonin and Other Neurotransmitter Transporters Involved?

  • Protocol
  • First Online:
Serotonin Receptor Technologies

Part of the book series: Neuromethods ((NM,volume 95))

  • 795 Accesses

Abstract

Several neurotransmitter systems play a pivotal role in the process of memory formation. The role of these systems in the process of retention loss or “forgetting,” especially that of reuptake transporters for γ-aminobutyric acid (GAT1), glutamate (EAAT1), dopamine (DAT), and serotonin (SERT), is poorly understood. In this paper, Western blot analysis was used to evaluate expression of GAT1, EAAT1, DAT, and SERT in rats under conditions allowing to study memory, amnesia, forgetting processes. Trained and untrained rats were pharmacologically treated with substances modifying serotonergic neurotransmission. Data show that, on one hand, forgetting can be considered as a behavioral process that is difficult to modify but, on the other hand, to prevent forgetting processes might be achieved by interfering with the expression pattern or functional activity of different specific neurotransmitter transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wylie G, Foxe J, Taylor T (2008) Forgetting as an active process: an fMRI investigation of item-method-directed forgetting. Cereb Cortex 18:670–682

    Article  PubMed  Google Scholar 

  2. Ludowiq E, Möller J, Bien C, Münte T, Elger C, Rosburg T (2010) Active suppression in the mediotemporal lobe during directed forgetting. Neurobiol Learning Mem 93:352–361

    Article  Google Scholar 

  3. Meneses A (2013) 5-HT systems: emergent targets for memory formation and memory alterations. Rev Neurosci 24:629–664

    Article  CAS  PubMed  Google Scholar 

  4. McGaugh JL (2013) Making lasting memories: remembering the significant. Proc Natl Acad Sci U S A 110:10402–10407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Mansuy IM (2005) Forgetting: theories and potential mechanisms. Med Sci 21:83–88

    Google Scholar 

  6. Wixted JT (2004) The psychology and neuroscience of forgetting. Annu Rev Psychol 55:235–269

    Article  PubMed  Google Scholar 

  7. Callaghan BL, Li S, Richardson R (2014) The elusive engram: what can infantile amnesia tell us about memory? Trends Neurosci 37:47–53

    Article  CAS  PubMed  Google Scholar 

  8. Davis R (2010) Rac in the act of forgetting. Cell 140:456–458

    Article  CAS  PubMed  Google Scholar 

  9. Hupbach A (2013) When forgetting preserves memory. Front Psychol 4:32

    Article  PubMed Central  PubMed  Google Scholar 

  10. Kaku M, Yamada K, Ichitani Y (2013) Can rats control previously acquired spatial information? Evidence of “directed forgetting” phenomenon in delay-interposed radial maze behavior. Behav Brain Res 248:1–6

    Article  PubMed  Google Scholar 

  11. Li S, Richardson R (2013) Traces of memory: reacquisition of fear following forgetting is NMDAr-independent. Learn Mem 20:174–182

    Article  PubMed  Google Scholar 

  12. Neath I, Surprenant A (2003) Human memory, 2nd edn. Thompson/Wadsworth, Belmont, CA

    Google Scholar 

  13. Thorndike E (1913) The psychology of learning. Columbia University Press, New York, NY

    Google Scholar 

  14. McGeoch J (1932) Forgetting and the law of disuse. Psy Rev 39:352–370

    Article  Google Scholar 

  15. Fioravanti M, Di Cesare F (1992) Forgetting curves in long-term memory: evidence for a multistage model of retention. Brain Cogn 18:116–124

    Article  CAS  PubMed  Google Scholar 

  16. Klatzky R (1975) Human memory: structures and processes. Freeman, San Francisco

    Google Scholar 

  17. Berry JA, Cervantes-Sandoval I, Nicholas EP, Davis RL (2012) Dopamine is required for learning and forgetting in Drosophila. Neuron 74:530–542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hardt O, Nader K, Nadel L (2013) Decay happens: the role of active forgetting in memory. Trends Cogn Sci 17:111–120

    Article  PubMed  Google Scholar 

  19. Papenberg G, Bäckman L, Nagel IE, Nietfeld W, Schröder J, Bertram L, Heekeren HR, Lindenberger U, Li SC (2013) Dopaminergic gene polymorphisms affect long-term forgetting in old age: further support for the magnification hypothesis. J Cogn Neurosci 25:571–579

    Article  PubMed  Google Scholar 

  20. Wagner A, Davachi L (2001) Cognitive neuroscience: forgetting of things past. Curr Biol 11:R964–R967

    Article  CAS  PubMed  Google Scholar 

  21. Zhang S, Yin Y, Lu H, Guo A (2008) Increased dopaminergic signaling impairs aversive olfactory memory retention in Drosophila. Biochem Biophys Res Commun 370:82–86

    Article  CAS  PubMed  Google Scholar 

  22. Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    Article  CAS  PubMed  Google Scholar 

  23. Margulies C, Tully T, Dubnau J (2005) Deconstructing memory in Drosophila. Curr Biol 15:R700–R713

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Shuai Y, Lu B, Hu Y, Wang L, Sun K, Zhong Y (2010) Forgetting is regulated through Rac activity in Drosophila. Cell 140:579–589

    Article  CAS  PubMed  Google Scholar 

  25. Ersche KD, Roiser JP, Lucas M, Domenici E, Robbins TW, Bullmore ET (2011) Peripheral biomarkers of cognitive response to dopamine receptor agonist treatment. Psychopharmacology 214:779–789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Pérez-García G, Meneses A (2008) Ex-vivo study of 5-HT1A and 5-HT7 receptor agonists and antagonists on cAMP accumulation during memory formation and amnesia. Behav Brain Res 195:139–146

    Article  PubMed  Google Scholar 

  27. Pérez-García G, Gonzalez-Espinosa C, Meneses A (2006) An mRNA expression analysis of stimulation and blockade of 5-HT7 receptors during memory consolidation. Behav Brain Res 169:83–92

    Article  PubMed  Google Scholar 

  28. Tellez R, Rocha L, Castillo C, Meneses A (2010) Autoradiographic study of serotonin transporter during memory formation. Behav Brain Res 12:12–26

    Article  Google Scholar 

  29. Wellman CL, Izquierdo A, Garrett JE, Martin KP, Carroll J, Millstein R, Lesch KP, Murphy DL, Holmes A (2007) Impaired stress-coping and fear extinction and abnormal corticolimbic morphology in serotonin transporter knock-out mice. J Neurosci 27:684–691

    Article  CAS  PubMed  Google Scholar 

  30. Tellez R, Gómez-Víquez L, Meneses A (2012) GABA, glutamate, dopamine and serotonin transporters expression on memory formation and amnesia. Neurobiol Learn Mem 97:189–201

    Article  CAS  PubMed  Google Scholar 

  31. Tellez R, Gómez-Viquez L, Liy-Salmeron G, Meneses A (2012) GABA, glutamate, dopamine and serotonin transporters expression on forgetting. Neurobiol Learn Mem 98:66–77

    Article  CAS  PubMed  Google Scholar 

  32. Gonzalez R, Chávez-Pascacio K, Meneses A (2013) Role of 5-HT5A receptors in the consolidation of memory. Behav Brain Res 252:246–251

    Article  CAS  PubMed  Google Scholar 

  33. Markou A, Salamone JD, Bussey TJ, Mar AC, Brunner D, Gilmour G, Balsam P (2013) Measuring reinforcement learning and motivation constructs in experimental animals: relevance to the negative symptoms of schizophrenia. Neurosci Biobehav Rev 37:2149–2165

    Article  PubMed  Google Scholar 

  34. Meneses A, Pérez-García G, Ponce-Lopez T, Castillo C (2011) 5-HT6 receptor memory and amnesia: behavioral pharmacology-learning and memory processes. Int Rev Neurobiol 96:27–47

    Article  CAS  PubMed  Google Scholar 

  35. Meneses A (2014) Neurotransmitters and memory: cholinergic, glutamatergic, GABAergic, dopaminergic, serotonergic, signaling, and memory. In: Meneses A (ed) Identification of neural markers accompanying memory. Elsevier, San Diego, USA, pp 5–45

    Chapter  Google Scholar 

  36. Meneses A, Perez-Garcia G (2007) 5-HT1A receptors and memory. Neurosci Biobehav Rev 31:705–727

    Article  CAS  PubMed  Google Scholar 

  37. Meneses A, Perez-Garcia G, Ponce-Lopez T, Tellez R, Castillo C (2011) Serotonin transporter and memory. Neuropharmacology 61:355–363

    Article  CAS  PubMed  Google Scholar 

  38. Da Silva C-AV, Quiedeville A, Boulouard M, Dauphin F (2012) 5-HT6 receptor blockade differentially affects scopolamine-induced deficits of working memory, recognition memory and aversive learning in mice. Psychopharmacology 222:99–115

    Article  Google Scholar 

  39. Freret T, Paizanis E, Beaudet G, Gusmao-Montaigne A, Nee G, Dauphin F, Bouet V, Boulouard M (2014) Modulation of 5-HT7 receptor: effect on object recognition performances in mice. Psychopharmacology 231:393–400

    Article  CAS  PubMed  Google Scholar 

  40. Haahr ME, Fisher P, Holst K, Madsen K, Jensen CG, Marner L, Lehel S, Baaré W, Knudsen G, Hasselbalch S (2013) The 5-HT4 receptor levels in hippocampus correlates inversely with memory test performance in humans. Hum Brain Mapp 34:3066–3374

    Article  PubMed  Google Scholar 

  41. Marcos B, García-Alloza M, Gil-Bea FJ, Chuang TT, Francis PT, Chen CP, Tsang SW, Lai MK, Ramirez MJ (2008) Involvement of an altered 5-HT6 receptor function in behavioral symptoms of Alzheimer’s disease. J Alzheimers Dis 14:43–50

    CAS  PubMed  Google Scholar 

  42. Reichel CM, Ramsey LA, Schwendt M, McGinty JF, See RE (2012) Methamphetamine-induced changes in the object recognition memory circuit. Neuropharmacology 62:1119–1126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Seyedabadi M, Fakhfouri G, Ramezani V, Mehr SE, Rahimian R (2014) The role of serotonin in memory: interactions with neurotransmitters and downstream signaling. Exp Brain Res 232:723–738

    Article  CAS  PubMed  Google Scholar 

  44. Woods S, Clarke N, Layfield R, Fone K (2012) 5-HT6 receptor agonists and antagonists enhance learning and memory in a conditioned emotion response paradigm by modulation of cholinergic and glutamatergic mechanisms. Br J Pharmacol 167:436–449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Huerta-Rivas A, Pérez-García G, González-Espinosa C, Meneses A (2010) Time-course of 5-HT6 receptor mRNA expression during memory consolidation and amnesia. Neurobiol Learn Mem 93:99–110

    Article  CAS  PubMed  Google Scholar 

  46. Perez-Garcia G, Meneses A (2009) Memory time-course: mRNA 5-HT1A and 5-HT7 receptors. Behav Brain Res 202:102–113

    Article  CAS  PubMed  Google Scholar 

  47. Meneses A (2007) Stimulation of 5-HT1A, 5-HT1B, 5-HT2A/2C, 5-HT3 and 5-HT4 receptors or 5-HT uptake inhibition: short- and long-term memory. Behav Brain Res 184:81–90

    Article  CAS  PubMed  Google Scholar 

  48. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York, NY

    Google Scholar 

  49. Duewer D, Currie L, Reeder D, Leigh S, Liu H, Mudd L (1995) Interlaboratory comparison of autoradiographic DNA profiling measurements. 2. Measurement uncertainty and its propagation. Anal Chem 67:1220–1231

    Article  CAS  PubMed  Google Scholar 

  50. Patton W (1995) Biologist’s perspective on analytical imaging systems as applied to protein gel electrophoresis. J Chromatogr 698:55–87

    Article  CAS  Google Scholar 

  51. Carmona M, Muraib K, Wanga L, Roberts A, Pasquale E (2009) Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc Natl Acad Sci U S A 106:12524–12529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Hu J, Quick M (2008) Substrate-mediated regulation of γ-aminobutyric acid transporter 1 in rat brain. Neuropharmacology 54:309–318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Sidiropoulou K, Chao S, Lu W, Wolf M (2001) Amphetamine administration does not alter protein levels of the GLT-1 and EAAC1 glutamate transporter subtypes in rat midbrain, nucleus accumbens, striatum, or prefrontal cortex. Mol Brain Res 90:187–192

    Article  CAS  PubMed  Google Scholar 

  54. Arnsten A, van Dyck C (1997) Monoamines and acetylcholine influences on higher cognitive functions in nonhuman primates: relevance of the treatment of Alzheimer’s disease. In: Brioni J, Decker M (eds) Neuropathology and functional anatomy of Alzheimer’s disease: pharmacological treatment of AD. Wiley-Liss, New York, NY, pp 63–86

    Google Scholar 

  55. Azmitia E, Whitaker-Azmitia P (1997) Development and adult plasticity of serotoninergic neurons and their target cells. In: Baumgarten H, Góther M (eds) Serotoninergic neurons and 5-HT receptors in the CNS. Springer, Berlin, pp 1–39

    Google Scholar 

  56. Solodkin A, van Hoesen G (1997) Neuropathology and functional anatomy of Alzheimer’s disease. In: Brioni J, Decker M (eds) Pharmacological treatment of Alzheimer’s disease. Wiley-Liss, New York, NY, pp 151–177

    Google Scholar 

  57. Sunderland T, Tariot PN, Weingartner H, Murphy DL, Newhouse PA, Mueller EA, Cohen RM (1986) Pharmacologic modelling of Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 10:599–610

    Article  CAS  PubMed  Google Scholar 

  58. Detke MJ, Lucki I (1996) Detection of serotonergic and noradrenergic antidepressants in the rat forced swimming test: the effects of water depth. Behav Brain Res 73:43–46

    Article  CAS  PubMed  Google Scholar 

  59. Shoblock JR, Sullivan EB, Maisonneuve IM, Glick SD (2003) Neurochemical and behavioral differences between d-methamphetamine and d-amphetamine in rats. Psychopharmacology 165:359–369

    CAS  PubMed  Google Scholar 

  60. Atnip GW (1977) Stimulus- and response-reinforcer contingencies in autoshaping, operant, classical, and omission training procedures in rats. J Exp Anal Behav 28:59–69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Meneses A, Perez-Garcia G, Liy-Salmeron G, Ponce-López T, Lacivita E, Leopoldo M. 5-HT7 receptor activation: procognitive and antiamnesic effects.

    Google Scholar 

  62. Tomie A, Di Poce J, Aguado A, Janes A, Benjamin D, Pohorecky L. Effects of autoshaping procedures on 3H-8-OH-DPAT-labeled 5-HT1a binding and 125I-LSD-labeled 5-HT2a binding in rat brain. Brain Res. 2003 Jun 13;975(1-2):167-78. Psychopharmacology (Berl). 2014 Jul 31. [Epub ahead of print] PMID: 25074446

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by CONACYT grant 80060. R. T. was supported by CONACYT scholarship (No.219677).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Meneses .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Meneses, A., Tellez, R. (2015). Autoshaping Memory Formation and Retention Loss: Are Serotonin and Other Neurotransmitter Transporters Involved?. In: Blenau, W., Baumann, A. (eds) Serotonin Receptor Technologies. Neuromethods, vol 95. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2187-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2187-4_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2186-7

  • Online ISBN: 978-1-4939-2187-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics