Skip to main content

Dissecting a Model of Depressive-Related Phenotype and Antidepressant Effects in 129S2/SvPas Mice

  • Protocol
  • First Online:
Serotonin Receptor Technologies

Part of the book series: Neuromethods ((NM,volume 95))

Abstract

As depressive disorder becomes one of the most prevalent neuropsychiatric dysfunctions worldwide, good animal models for studying depression and uncovering new targets for antidepressants are required. Since genetic factors clearly contribute to the manifestation of depression, transgenic mouse models offer seminal tools to disentangle this complex disorder. The behavioral and neurochemical responses of transgenic mice are the result of both the targeted or affected gene itself and its interactions with endogenous factors which, depending on the strain’s genotype, may differ significantly. A well-established strain to generate transgenic mice is the 129S2/SvPas strain. However, once a transgenic strain has been established, the animals are frequently backcrossed to C57BL/6 mice. As a consequence, experimental conditions for most paradigms are well established for C57BL/6 mice, but they might not be adequately adapted for other mouse models. Here, we are describing steps to establish a model of depressive-like state adapted to 129S2/SvPas mice. By setting the experimental conditions appropriate for 129S2/SvPas mice, costly and time-consuming backcrossing could be prevented and, most importantly, a more ethical use of laboratory animals is promoted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong ML, Licinio J (2001) Research and treatment approaches to depression. Nat Rev Neurosci 2:343–351

    Article  CAS  PubMed  Google Scholar 

  2. Cryan JF, Mombereau C (2004) In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry 9:326–357

    Article  CAS  PubMed  Google Scholar 

  3. Lee SH, Choi TK, Lee E, Seok JH, Lee HS, Kim SJ (2010) Serotonin transporter gene polymorphism associated with short-term treatment response to venlafaxine. Neuropsychobiology 62:198–206

    Article  CAS  PubMed  Google Scholar 

  4. Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, Hitzemann RJ, Maxson SC, Miner LL, Silva AJ, Wehner JM, Wynshaw-Boris A, Paylor R (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl) 132:107–124

    Article  CAS  Google Scholar 

  5. Matsuo N, Takao K, Nakanishi K, Yamasaki N, Tanda K, Miyakawa T (2010) Behavioral profiles of three C57BL/6 substrains. Front Behav Neurosci 4:29

    PubMed Central  PubMed  Google Scholar 

  6. Willner P (1991) Animal models as simulations of depression. Trends Pharmacol Sci 12:131–136

    Article  CAS  PubMed  Google Scholar 

  7. Willner P, Muscat R, Papp M (1992) Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev 16:525–534

    Article  CAS  PubMed  Google Scholar 

  8. Griebel G, Simiand J, Serradeil-Le Gal C, Wagnon J, Pascal M, Scatton B, Maffrand JP, Soubrie P (2002) Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc Natl Acad Sci U S A 99:6370–6375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    Article  CAS  PubMed  Google Scholar 

  10. Ibarguen-Vargas Y, Surget A, Touma C, Palme R, Belzung C (2008) Multifaceted strain-specific effects in a mouse model of depression and of antidepressant reversal. Psychoneuroendocrinology 33:1357–1368

    Article  CAS  PubMed  Google Scholar 

  11. Beck JA, Lloyd S, Hafezparast M, Lennon-Pierce M, Eppig JT, Festing MF, Fisher EM (2000) Genealogies of mouse inbred strains. Nat Genet 24:23–25

    Article  CAS  PubMed  Google Scholar 

  12. Surget A, Wang Y, Leman S, Ibarguen-Vargas Y, Edgar N, Griebel G, Belzung C, Sibille E (2009) Corticolimbic transcriptome changes are state-dependent and region-specific in a rodent model of depression and of antidepressant reversal. Neuropsychopharmacology 34:1363–1380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Surget A, Saxe M, Leman S, Ibarguen-Vargas Y, Chalon S, Griebel G, Hen R, Belzung C (2008) Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol Psychiatry 64:293–301

    Article  CAS  PubMed  Google Scholar 

  14. Ducottet C, Griebel G, Belzung C (2003) Effects of the selective nonpeptide corticotropin-releasing factor receptor 1 antagonist antalarmin in the chronic mild stress model of depression in mice. Prog Neuropsychopharmacol Biol Psychiatry 27:625–631

    Article  CAS  PubMed  Google Scholar 

  15. David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, Drew M, Craig DA, Guiard BP, Guilloux JP, Artymyshyn RP, Gardier AM, Gerald C, Antonijevic IA, Leonardo ED, Hen R (2009) Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62:479–493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Yalcin I, Belzung C, Surget A (2008) Mouse strain differences in the unpredictable chronic mild stress: a four-antidepressant survey. Behav Brain Res 193:140–143

    Article  CAS  PubMed  Google Scholar 

  17. Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  CAS  PubMed  Google Scholar 

  18. Diaz S, Maroteaux L (2011) Implication of 5-HT2B receptors in the serotonin syndrome. Neuropharmacology 61:495–502

    Article  CAS  PubMed  Google Scholar 

  19. Diaz S, Doly S, Narboux-Nême N, Fernández S, Mazot P, Banas SM, Boutourlinsky K, Moutkine I, Belmer A, Roumier A, Maroteaux L (2012) 5-HT2B receptors are required for serotonin-selective antidepressant actions. Mol Psychiatry 17:154–163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Wojtowicz JM, Kee N (2006) BrdU assay for neurogenesis in rodents. Nat Protoc 1:1399–1405

    Article  CAS  PubMed  Google Scholar 

  21. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34:13–25

    Article  CAS  PubMed  Google Scholar 

  22. Tanti A, Belzung C (2010) Open questions in current models of antidepressant action. Br J Pharmacol 159:1187–1200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23:477–501

    Article  CAS  PubMed  Google Scholar 

  24. Nollet M, Gaillard P, Tanti A, Girault V, Belzung C, Leman S (2012) Neurogenesis-independent antidepressant-like effects on behavior and stress axis response of a dual orexin receptor antagonist in a rodent model of depression. Neuropsychopharmacology 37:2210–2221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Golde WT, Gollobin P, Rodriguez LL (2005) A rapid, simple, and humane method for submandibular bleeding of mice using a lancet. Lab Anim 34:39–43

    Article  Google Scholar 

  26. Pothion S, Bizot JC, Trovero F, Belzung C (2004) Strain differences in sucrose preference and in the consequences of unpredictable chronic mild stress. Behav Brain Res 155:135–146

    Article  PubMed  Google Scholar 

  27. Surget A, Tanti A, Leonardo ED, Laugeray A, Rainer Q, Touma C, Palme R, Griebel G, Ibarguen-Vargas Y, Hen R, Belzung C (2011) Antidepressants recruit new neurons to improve stress response regulation. Mol Psychiatry 16:1177–1188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Martin AL, Brown RE (2010) The lonely mouse: verification of a separation-induced model of depression in female mice. Behav Brain Res 207:196–207

    Article  CAS  PubMed  Google Scholar 

  29. Threadgill DW, Yee D, Matin A, Nadeau JH, Magnuson T (1997) Genealogy of the 129 inbred strains: 129/SvJ is a contaminated inbred strain. Mamm Genome 8:390–393

    Article  CAS  PubMed  Google Scholar 

  30. Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23:238–245

    Article  CAS  PubMed  Google Scholar 

  31. Cryan JF, Holmes A (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4:775–790

    Article  CAS  PubMed  Google Scholar 

  32. Jacobson LH, Cryan JF (2007) Feeling strained? Influence of genetic background on depression-related behavior in mice: a review. Behav Genet 37:171–213

    Article  CAS  PubMed  Google Scholar 

  33. Fernandez SP, Gaspar P (2012) Investigating anxiety and depressive-like phenotypes in genetic mouse models of serotonin depletion. Neuropharmacology 62:144–154

    Article  CAS  PubMed  Google Scholar 

  34. David DJP, Renard CE, Jolliet P, Hascoët M, Bourin M (2003) Antidepressant-like effects in various mice strains in the forced swimming test. Psychopharmacology (Berl) 166:373–382

    CAS  Google Scholar 

  35. Lucki I, Dalvi A, Mayorga AJ (2001) Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl) 155:315–322

    Article  CAS  Google Scholar 

  36. Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20:9104–9110

    CAS  PubMed  Google Scholar 

  37. Petrik D, Lagace DC, Eisch AJ (2012) The neurogenesis hypothesis of affective and anxiety disorders: are we mistaking the scaffolding for the building? Neuropharmacology 62:21–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Tanti A, Westphal WP, Girault V, Brizard B, Devers S, Leguisquet AM, Surget A, Belzung C (2013) Region-dependent and stage-specific effects of stress, environmental enrichment, and antidepressant treatment on hippocampal neurogenesis. Hippocampus 23:797–811

    Article  CAS  PubMed  Google Scholar 

  39. Hilakivi LA, Ota M, Lister RG (1989) Effect of isolation on brain monoamines and the behavior of mice in tests of exploration, locomotion, anxiety and behavioral ‘despair’. Pharmacol Biochem Behav 33:371–374

    Article  CAS  PubMed  Google Scholar 

  40. Spani D, Arras M, Konig B, Rulicke T (2003) Higher heart rate of laboratory mice housed individually vs in pairs. Lab Anim 37:54–62

    Article  CAS  PubMed  Google Scholar 

  41. Bartolomucci A, Palanza P, Sacerdote P, Ceresini G, Chirieleison A, Panerai AE, Parmigiani S (2003) Individual housing induces altered immuno-endocrine responses to psychological stress in male mice. Psychoneuroendocrinology 28:540–558

    Article  CAS  PubMed  Google Scholar 

  42. Hunt C, Hambly C (2006) Faecal corticosterone concentrations indicate that separately housed male mice are not more stressed than group housed males. Physiol Behav 87:519–526

    Article  CAS  PubMed  Google Scholar 

  43. Blazer DG 2nd, Hybels CF (2005) Origins of depression in later life. Psychol Med 35:1241–1252

    Article  PubMed  Google Scholar 

  44. Dadomo H, Sanghez V, Di Cristo L, Lori A, Ceresini G, Malinge I, Parmigiani S, Palanza P, Sheardown M, Bartolomucci A (2011) Vulnerability to chronic subordination stress-induced depression-like disorders in adult 129SvEv male mice. Prog Neuropsychopharmacol Biol Psychiatry 35:1461–1471

    Article  PubMed  Google Scholar 

  45. Ardayfio P, Kim KS (2006) Anxiogenic-like effect of chronic corticosterone in the light-dark emergence task in mice. Behav Neurosci 120:249–256

    Article  CAS  PubMed  Google Scholar 

  46. Murray F, Smith DW, Hutson PH (2008) Chronic low dose corticosterone exposure decreased hippocampal cell proliferation, volume and induced anxiety and depression like behaviours in mice. Eur J Pharmacol 583:115–127

    Article  CAS  PubMed  Google Scholar 

  47. Gourley SL, Kiraly DD, Howell JL, Olausson P, Taylor JR (2008) Acute hippocampal brain-derived neurotrophic factor restores motivational and forced swim performance after corticosterone. Biol Psychiatry 64:884–890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Kiselycznyk C, Holmes A (2011) All (C57BL/6) mice are not created equal. Front Neurosci 5:10

    Article  PubMed Central  PubMed  Google Scholar 

  49. Amireault P, Hatia S, Bayard E, Bernex F, Collet C, Callebert J, Launay JM, Hermine O, Schneider E, Mallet J, Dy M, Cote F (2011) Ineffective erythropoiesis with reduced red blood cell survival in serotonin-deficient mice. Proc Natl Acad Sci U S A 108:13141–13146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Launay J-M, Herve P, Callebert J, Mallat Z, Collet C, Doly S, Belmer A, Diaz SL, Hatia S, Cote F, Humbert M, Maroteaux L (2012) Serotonin 5-HT2B receptors are required for bone-marrow contribution to pulmonary arterial hypertension. Blood 119:1772–1780

    Article  CAS  PubMed  Google Scholar 

  51. Fligny C, Fromes Y, Bonnin P, Darmon M, Bayard E, Launay JM, Cote F, Mallet J, Vodjdani G (2008) Maternal serotonin influences cardiac function in adult offspring. FASEB J 22:2340–2349

    Article  CAS  PubMed  Google Scholar 

  52. Callebert J, Esteve JM, Hervé P, Peoc'h K, Tournois C, Drouet L, Launay JM, Maroteaux L (2006) Evidence for a control of plasma serotonin levels by 5-Hydroxytryptamine2B receptors in mice. J Pharmacol Exp Ther 317:724–731

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. C. Mombereau and S. Fernández for invaluable critical advises along the development of this project, N. Narboux-Nême for his collaboration with animal work, and DVM. Begoña Peñalba for sharing her expertise in submandibular bleeding technique. This work was supported by the Centre National de la Recherche Scientifique, the Institut National de la Santé et de la Recherche Médicale, the Université Pierre et Marie Curie, and grants from the Fondation de France, and the French Ministry of Research (Agence Nationale pour la Recherche ANR-12-BSV1-0015-01). S. Diaz was supported by fellowships from IBRO and from Region Ile de France DIM STEM. LM’s team is part of the École des Neurosciences de Paris Ile-de-France network and of the Bio-Psy Labex.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Maroteaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Diaz, S.L., Maroteaux, L. (2015). Dissecting a Model of Depressive-Related Phenotype and Antidepressant Effects in 129S2/SvPas Mice. In: Blenau, W., Baumann, A. (eds) Serotonin Receptor Technologies. Neuromethods, vol 95. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2187-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2187-4_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2186-7

  • Online ISBN: 978-1-4939-2187-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics