Skip to main content

Analysis of Biomolecular Dynamics by FRAP and Computer Simulation

  • Protocol
  • First Online:
Advanced Fluorescence Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1251))

Abstract

We present a Monte Carlo simulation environment for modelling complex biological molecular interaction networks and for the design, validation, and quantitative analysis of FRAP assays to study these. The program is straightforward in its implementation and can be instructed through an intuitive script language. The simulation tool fits very well in a systems biology research setting that aims to maintain an interactive cycle of experiment-driven modelling and model-driven experimentation: the model and the experiment are in the same simulation. The full program can be obtained by request to the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aldridge BB, Burke JM, Lauffenburger DA et al (2006) Physicochemical modelling of cell signalling pathways. Nat Cell Biol 8:1195–1203

    Article  CAS  PubMed  Google Scholar 

  2. van Royen ME, Dinant C, Farla P et al (2009) FRAP and FRET methods to study nuclear receptors in living cells. In: McEwan IJ (ed) Nuclear receptor superfamily, vol 505, Methods Mol Biol. Springer, Totowa, pp 69–96

    Chapter  Google Scholar 

  3. van Royen ME, Farla P, Mattern KA et al (2009) Fluorescence recovery after photobleaching (FRAP) to study nuclear protein dynamics in living cells. In: Hancock R (ed) The nucleus, vol 464, Methods Mol Biol. Springer, Totowa, pp 363–385

    Chapter  Google Scholar 

  4. Chen WW, Niepel M, Sorger PK (2010) Classic and contemporary approaches to modeling biochemical reactions. Genes Dev 24:1861–1875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Alves R, Antunes F, Salvador A (2006) Tools for kinetic modeling of biochemical networks. Nat Biotechnol 24:667–672

    Article  CAS  PubMed  Google Scholar 

  6. Beaudouin J, Mora-Bermudez F, Klee T et al (2006) Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins. Biophys J 90:1878–1894

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Braga J, Desterro JM, Carmo-Fonseca M (2004) Intracellular macromolecular mobility measured by fluorescence recovery after photobleaching with confocal laser scanning microscopes. Mol Biol Cell 15:4749–4760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. McNally JG (2008) Quantitative FRAP in analysis of molecular binding dynamics in vivo. Methods Cell Biol 85:329–351

    Article  CAS  PubMed  Google Scholar 

  9. Phair RD, Scaffidi P, Elbi C et al (2004) Global nature of dynamic protein-chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol Cell Biol 24:6393–6402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. van Royen ME, Cunha SM, Brink MC et al (2007) Compartmentalization of androgen receptor protein-protein interactions in living cells. J Cell Biol 177:63–72

    Article  PubMed Central  PubMed  Google Scholar 

  11. Farla P, Hersmus R, Trapman J et al (2005) Antiandrogens prevent stable DNA-binding of the androgen receptor. J Cell Sci 118:4187–4198

    Article  CAS  PubMed  Google Scholar 

  12. Mueller F, Mazza D, Stasevich TJ et al (2010) FRAP and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know? Curr Opin Cell Biol 22:403–411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Carrero G, McDonald D, Crawford E et al (2003) Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins. Methods 29:14–28

    Article  CAS  PubMed  Google Scholar 

  14. Braeckmans K, Peeters L, Sanders NN et al (2003) Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope. Biophys J 85:2240–2252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kang M, Kenworthy AK (2008) A closed-form analytic expression for FRAP formula for the binding diffusion model. Biophys J 95:L13–L15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Tsibidis GD (2009) Quantitative interpretation of binding reactions of rapidly diffusing species using fluorescence recovery after photobleaching. J Microsc 233:384–390

    Article  CAS  PubMed  Google Scholar 

  17. Tsibidis GD, Ripoll J (2008) Investigation of binding mechanisms of nuclear proteins using confocal scanning laser microscopy and FRAP. J Theor Biol 253:755–768

    Article  CAS  PubMed  Google Scholar 

  18. Braeckmans K, Remaut K, Vandenbroucke RE et al (2007) Line FRAP with the confocal laser scanning microscope for diffusion measurements in small regions of 3-D samples. Biophys J 92:2172–2183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hallen MA, Layton AT (2010) Expanding the scope of quantitative FRAP analysis. J Theor Biol 262:295–305

    Article  CAS  PubMed  Google Scholar 

  20. Mazza D, Braeckmans K, Cella F et al (2008) A new FRAP/FRAPa method for three-dimensional diffusion measurements based on multiphoton excitation microscopy. Biophys J 95:3457–3469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Mazza D, Cella F, Vicidomini G et al (2007) Role of three-dimensional bleach distribution in confocal and two-photon fluorescence recovery after photobleaching experiments. Appl Opt 46:7401–7411

    Article  CAS  PubMed  Google Scholar 

  22. Kang M, Day CA, Drake K et al (2009) A generalization of theory for two-dimensional fluorescence recovery after photobleaching applicable to confocal laser scanning microscopes. Biophys J 97:1501–1511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Mueller F, Wach P, McNally JG (2008) Evidence for a common mode of transcription factor interaction with chromatin as revealed by improved quantitative fluorescence recovery after photobleaching. Biophys J 94:3323–3339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Agarwal S, van Cappellen WA, Guenole A et al (2011) ATP-dependent and independent functions of Rad54 in genome maintenance. J Cell Biol 192:735–750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. de Graaf P, Mousson F, Geverts B et al (2010) Chromatin interaction of TATA-binding protein is dynamically regulated in human cells. J Cell Sci 123:2663–2671

    Article  PubMed  Google Scholar 

  26. Farla P, Hersmus R, Geverts B et al (2004) The androgen receptor ligand-binding domain stabilizes DNA binding in living cells. J Struct Biol 147:50–61

    Article  CAS  PubMed  Google Scholar 

  27. Luijsterburg MS, Goedhart J, Moser J et al (2007) Dynamic in vivo interaction of DDB2 E3 ubiquitin ligase with UV-damaged DNA is independent of damage-recognition protein XPC. J Cell Sci 120:2706–2716

    Article  CAS  PubMed  Google Scholar 

  28. Nicassio F, Corrado N, Vissers JH et al (2007) Human USP3 is a chromatin modifier required for S phase progression and genome stability. Curr Biol 17:1972–1977

    Article  CAS  PubMed  Google Scholar 

  29. Nishi R, Alekseev S, Dinant C et al (2009) UV-DDB-dependent regulation of nucleotide excision repair kinetics in living cells. DNA Repair (Amst) 8:767–776

    Article  CAS  Google Scholar 

  30. Sabbioneda S, Gourdin AM, Green CM et al (2008) Effect of proliferating cell nuclear antigen ubiquitination and chromatin structure on the dynamic properties of the Y-family DNA polymerases. Mol Biol Cell 19:5193–5202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Tanner TM, Denayer S, Geverts B et al (2010) A 629RKLKK633 motif in the hinge region controls the androgen receptor at multiple levels. Cell Mol Life Sci 67:1919–1927

    Article  CAS  PubMed  Google Scholar 

  32. van den Boom V, Kooistra SM, Boesjes M et al (2007) UTF1 is a chromatin-associated protein involved in ES cell differentiation. J Cell Biol 178:913–924

    Article  PubMed Central  PubMed  Google Scholar 

  33. Xouri G, Squire A, Dimaki M et al (2007) Cdt1 associates dynamically with chromatin throughout G1 and recruits Geminin onto chromatin. EMBO J 26:1303–1314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Zotter A, Luijsterburg MS, Warmerdam DO et al (2006) Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV-induced dna damage depends on functional TFIIH. Mol Cell Biol 26:8868–8879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. van Royen ME, van Cappellen WA, Geverts B et al (2014) Androgen receptor complexes probe DNA for recognition sequences by short random interactions. J Cell Sci 127(Pt 7):1406–1416

    Article  PubMed  Google Scholar 

  36. Houtsmuller AB, Rademakers S, Nigg AL et al (1999) Action of DNA repair endonuclease ERCC1/XPF in living cells. Science 284:958–961

    Article  CAS  PubMed  Google Scholar 

  37. Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404:604–609

    Article  CAS  PubMed  Google Scholar 

  38. Dinant C, van Royen ME, Vermeulen W et al (2008) Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching. J Microsc 231:97–104

    Article  CAS  PubMed  Google Scholar 

  39. Faraday M (2008) The correspondence of Michael Faraday, Vol 5. Institution of Engineering and Technology, Stevenage, pp 1855–1860

    Google Scholar 

  40. Tweney RD (2009) Mathematical representations in science: a cognitive-historical case history. Top Cogn Sci 1:758–776, 2010

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriaan B. Houtsmuller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Geverts, B., van Royen, M.E., Houtsmuller, A.B. (2015). Analysis of Biomolecular Dynamics by FRAP and Computer Simulation. In: Verveer, P. (eds) Advanced Fluorescence Microscopy. Methods in Molecular Biology, vol 1251. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2080-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2080-8_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2079-2

  • Online ISBN: 978-1-4939-2080-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics