Skip to main content
Log in

A 629RKLKK633 motif in the hinge region controls the androgen receptor at multiple levels

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The androgen receptor protein has specific domains involved in DNA binding, ligand binding, and transactivation, whose activities need to be integrated during transcription activation. The hinge region, more particular a 629RKLKK633 motif, seems to play a crucial role in this process. Indeed, although the motif is not part of the DNA-binding domain, its positive residues are involved in optimal DNA binding and nuclear translocation as shown by mutation analysis. When the mutated ARs are forced into the nucleus, however, the residues seem to play different roles in transactivation. Moreover, we show by FRAP analysis that during activation, the AR is distributed in the nucleus in a mobile and two immobile fractions, and that mutations in the 629RKLKK633 motif affect the distribution of the AR over these three intranuclear fractions. Taken together, the 629RKLKK633 motif is a multifunctional motif that integrates nuclear localization, receptor stability, DNA binding, transactivation potential and intranuclear mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Métivier R, Reid G, Gannon F (2006) Transcription in four dimensions: nuclear receptor-directed initiation of gene expression. EMBO reports 7:161–167

    Article  PubMed  Google Scholar 

  2. Xu P, Liu Y, Shan S, Kong Y, Zhou Q, Li M, Ding J, Xie Y, Wang Y (2004) Molecular mechanism for the potentiation of the transcriptional activity of human liver receptor homolog 1 by steroid receptor coactivator-1. Mol Endocrinol 18:1887–1905

    Article  CAS  PubMed  Google Scholar 

  3. Iordanidou P, Aggelidou E, Demetriades C, Hadzopoulou-Cladaras M (2005) Distinct amino acid residues may be involved in coactivator and ligand interactions in hepatocyte nuclear factor-4α. J Biol Chem 280:21810–21819

    Article  CAS  PubMed  Google Scholar 

  4. Chandra V, Huang P, Hamuro Y, Raghuram S, Wang Y, Burris TP, Rastinejad F (2008) Structure of the intact PPAR-γ-RXR-α nuclear receptor complex on DNA. Nature 456:350–356

    Article  PubMed  Google Scholar 

  5. Hong W, Baniahmad A, Liu Y, Li H (2008) Bag-1 M is a component of the in vivo DNA-glucocorticoid receptor complex at hormone-regulated promoter. J Mol Biol 384:22–30

    Article  CAS  PubMed  Google Scholar 

  6. Nader N, Chrousos GP, Kino T (2009) Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylation its hinge region lysine cluster: potential physiological implications. FASEB J 23:1572–1583

    Article  CAS  PubMed  Google Scholar 

  7. Huq MD, Ha SG, Wei LN (2008) Modulation of retinoic acid receptor alpha activity by lysine methylation in the DNA binding domain. J Proteome Res 7:4538–4545

    Article  CAS  PubMed  Google Scholar 

  8. Berry NB, Fan M, Nephew KP (2008) Estrogen receptor-α hinge-region lysines 302 and 303 regulate receptor degradation by the proteasome. Mol Endocrinol 22:1535–1551

    Article  CAS  PubMed  Google Scholar 

  9. Subramanian K, Jia D, Kapoor-Vazirani P, Powell DR, Collins RE, Sharma D, Peng J, Cheng X, Vertino PM (2008) Regulation of estrogen receptor alpha by the SET7 lysine methyltransferase. Mol Cell 30:336–347

    Article  CAS  PubMed  Google Scholar 

  10. Fu M, Wang C, Reutens AT, Wang J, Angeletti RH, Siconolfi-Baez L, Ogryzko V, Avantaggiati ML, Pestell RG (2000) p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. J Biol Chem 275:20853–20860

    Article  CAS  PubMed  Google Scholar 

  11. Haelens A, Verrijdt G, Callewaert L, Christiaens V, Schauwaers K, Peeters B, Rombauts W, Claessens F (2003) DNA recognition by the androgen receptor: evidence for an alternative DNA-dependent dimerization, and an active role of sequences flanking the response element on transactivation. Biochem J 369:141–151

    Article  CAS  PubMed  Google Scholar 

  12. Jenster G, Trapman J, Brinkmann AO (1993) Nuclear import of the androgen receptor. Biochem J 293:761–768

    CAS  PubMed  Google Scholar 

  13. Cutress ML, Withaker HC, Mills IG, Stewart M, Neal DE (2008) Structural basis for the nuclear import of the human androgen receptor. J Cell Sci 121:957–968

    Article  CAS  PubMed  Google Scholar 

  14. Chen S, Kesler CT, Paschal BM, Balk SP (2009) Androgen receptor phosphorylation and activity are regulated by an association with protein phosphatase 1. J Biol Chem 284:25576–25584

    Article  CAS  PubMed  Google Scholar 

  15. Faus H, Haendler B (2008) Androgen receptor acetylation sites differentially regulate gene control. J Cell Biochem 104:511–524

    Article  CAS  PubMed  Google Scholar 

  16. Claessens F, Denayer S, Van Tilborgh N, Kerkhofs S, Helsen C, Haelens A (2008) Diverse roles of androgen receptor domains in AR-mediated signalling. N.R.S. 6:e008

    Google Scholar 

  17. Deeb A, Jääskeläinen J, Dattani M, Whitaker C, Costigan C, Hughes IA (2008) A novel mutation in the human androgen receptor suggests a regulatory role for the hinge region in amino-terminal and carboxy-terminal interactions. J Clin Endocrinol Metab 93:3691–3696

    Article  CAS  PubMed  Google Scholar 

  18. Denayer S, Helsen C, Thorrez L, Haelens A, Claessens F (2010) The rules of DNA recognition by the androgen receptor. Mol Endocrinol (in press)

  19. Haelens A, Tanner T, Denayer S, Callewaert L, Claessens F (2007) The hinge region regulates DNA binding, nuclear translocation and transactivation of the androgen receptor. Cancer Res 67:4514–4523

    Article  CAS  PubMed  Google Scholar 

  20. van Royen ME, Farla P, Mattern KA, Geverts B, Trapman J, Houtsmuller AB (2009) Fluorescence recovery after photobleaching (FRAP) to study nuclear protein dynamics in living cells. Methods Mol Biol 464:365–385

    Google Scholar 

  21. Rost B, Yachdav G, Liu J (2004) The PredictProtein server. Nucleic Acids Res 32:W321–W326

    Article  CAS  PubMed  Google Scholar 

  22. Guiochon-Mantel A, Lescop P, Christin-Maitre S, Loosfelt H, Perrot-Applanat M, Milgrom E (1991) Nucleocytoplasmic shuttling of the progesterone receptor. EMBO J 12:3851–3859

    Google Scholar 

  23. Mader S, Chambon P, White JH (1993) Defining a minimal estrogen receptor DNA binding domain. Nucleic Acids Res 21:1125–1132

    Article  CAS  PubMed  Google Scholar 

  24. Wang C, Fu M, Angeletti RH, Siconolfi-Baez L, Reutens AT, Albanese C, Lisanti MP, Katzenellenbogen BS, Kato S, Hopp T, Fuqua SA, Lopez GN, Kushner PJ, Pestell RG (2001) Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity. J Biol Chem 276:18375–18383

    Article  CAS  PubMed  Google Scholar 

  25. Roemer SC, Donham DC, Sherman L, Pon VH, Edwards DP, Churchill MEA (2006) Structure of the progesterone receptor-DNA complex: novel interactions required for binding to half-site response elements. Mol Endocrinol 20:3042–3052

    Article  CAS  PubMed  Google Scholar 

  26. Klokk TI, Kurys P, Elbi C, Nagaich AK, Hendarwanto A, Slagsvold T, Chang C, Hager GL, Saatcioglu F (2007) Ligand-specific dynamics of the androgen receptor at its response element in living cells. Mol Cell Biol 27:1823–1843

    Article  CAS  PubMed  Google Scholar 

  27. George AA, Schiltz RL, Hager GL (2009) Dynamic access of the glucocorticoid receptor to response elements in chromatin. Int J Biochem Cell Biol 41:214–224

    Article  CAS  PubMed  Google Scholar 

  28. Reid G, Gallais R, Métivier R (2009) Marking time: the dynamic role of chromatin and covalent modification in transcription. Int J Biochem Cell Biol 41:155–163

    Article  CAS  PubMed  Google Scholar 

  29. Phair RD, Scaffidi P, Elbi C, Vecerova J, Dey A, Ozato K, Brown DT, Hager G, Bustin M, Misteli T (2004) Global nature of dynamic protein-chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol Cell Biol 24:6393–6402

    Article  CAS  PubMed  Google Scholar 

  30. Dinant C, Luijsterburg MS, Höfer T, von Bornstaedt G, Vermeulen W, Houtsmuller AB, van Driel R (2009) Assembly of multiprotein complexes that control genome function. Cell Biol 185:21–26

    Article  CAS  Google Scholar 

  31. Gaughan L, Logan IR, Cook S, Neal DE, Robsonn CN (2002) Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor. J Biol Chem 277:25904–25913

    Article  CAS  PubMed  Google Scholar 

  32. Poukka H, Aarnisalo P, Karvonen U, Palvimo JJ, Jänne OA (1999) Ubc9 interacts with the androgen receptor and activates receptor-dependent transcription. J Biol Chem 274:19441–19446

    Article  CAS  PubMed  Google Scholar 

  33. Poukka H, Karvonen U, Yoshikawa N, Tanaka H, Palvimo JJ, Jänne OA (2000) The RING finger protein SNURF modulates nuclear trafficking of the androgen receptor. J Cell Sci 113:2991–3001

    CAS  PubMed  Google Scholar 

  34. Moilanen AM, Karvonen U, Poukka H, Yan W, Toppari J, Jänne OA, Palvimo JJ (1999) A testis-specific androgen receptor coregulator that belongs to a novel family of nuclear proteins. J Biol Chem 274:3700–3704

    Article  CAS  PubMed  Google Scholar 

  35. Link KA, Balasubramaniam S, Sharma A, Comstock CES, Godoy-Tundidor S, Powers N, Cao KH, Haelens A, Claessens F, Revelo MP, Knudsen KE (2008) Targeting the BAF57 SWI/SNF subunit in prostate cancer: a novel platform to control androgen receptor activity. Cancer Res 68:4551–4558

    Article  CAS  PubMed  Google Scholar 

  36. Reutens AT, Fu M, Wang C, Albanese C, McPhaul MJ, Sun Z, Balk SP, Jänne OA, Palvimo JJ, Pestell RG (2001) Cyclin D1 binds the androgen receptor and regulates hormone-dependent signaling in a p300/CBP-associated factor (P/CAF)-dependent manner. Mol Endocrinol 15:797–811

    Article  CAS  PubMed  Google Scholar 

  37. Verrijdt G, Haelens A, Schoenmakers E, Rombauts W, Claessens F (2002) Comparative analysis of the influence of the high-mobility group box 1 protein on DNA binding and transcriptional activation by the androgen, glucocorticoid, progesterone and mineralocortocoid receptors. Biochem J 361:97–103

    Article  CAS  PubMed  Google Scholar 

  38. Léotoing L, Meunier L, Manin M, Mauduit C, Decaussin M, Verrijdt G, Claessens F, Benahmed M, Veyssière G, Morel L, Beaudoin C (2008) Influence of nucleophosmin/B23 on DNA binding and transcriptional activity of the androgen receptor in prostate cancer cell. Oncogene 27:2858–2867

    Article  PubMed  Google Scholar 

  39. Cheng S, Brzostek S, Lee SR, Hollenberg AN, Balk SP (2002) Inhibition of the dihydrotestosterone-activated androgen receptor by nuclear receptor corepressor. Mol Endocrinol 16:1492–1501

    Article  CAS  PubMed  Google Scholar 

  40. Faus H, Haendler B (2006) Post-translational modifications of steroid receptors. Biomed Pharmacother 60:520–528

    Article  CAS  PubMed  Google Scholar 

  41. Jaworski T (2006) Degradation and beyond: control of androgen receptor activity by the proteasome system. Cell Mol Biol Lett 11:109–131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the “Bijzonder Onderzoeksfonds K.U.Leuven” (Onderzoekstoelage and CREA/08/031); the Flanders Research Foundation (F.W.O. grant 1.5.065.05); and the Congressionally Directed Medical Research Program (Prostate Cancer Research Program award DAMD17-02-1-0082). C.H. is holder of a F.W.O. Ph.D. fellowship, A.H. is a postdoctoral F.W.O. fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Claessens.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1.

Functional study of the putative amphipatic helix in the hinge region. (A) A schematic representation of the putative helical structure of the N-terminal part of the hinge region as determined by the structural prediction programme, PredictProtein. (B) Functional analysis of the single asparagine mutants that should disrupt the putative helix. HeLa cells were transfected with the TAT-GRE-luc reporter together with the appropriate AR expression vector. Cells were stimulated for 24 hours with vehicle or 10 nM R1881. Results are shown as induction factors and represent three experiments performed in triplicate, where error bars indicate the SEM. (C) Functional analysis of the proline mutants at the TAT-GRE-luc reporter in HeLa cells (experiments executed as in B above). (D) Expression of the single asparagine mutants (left) and proline point-mutants (right), in HeLa cells after 24 hours stimulation with 10 nM R1881. The expressed proteins were detected using the M2 anti-flag antibody. (PPT 176 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanner, T.M., Denayer, S., Geverts, B. et al. A 629RKLKK633 motif in the hinge region controls the androgen receptor at multiple levels. Cell. Mol. Life Sci. 67, 1919–1927 (2010). https://doi.org/10.1007/s00018-010-0302-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0302-1

Keywords

Navigation