Computer-Aided Design of DNA Origami Structures

Part of the Methods in Molecular Biology book series (MIMB, volume 1244)


The DNA origami method enables the creation of complex nanoscale objects that can be used to organize molecular components and to function as reconfigurable mechanical devices. Of relevance to synthetic biology, DNA origami structures can be delivered to cells where they can perform complicated sense-and-act tasks, and can be used as scaffolds to organize enzymes for enhanced synthesis. The design of DNA origami structures is a complicated matter and is most efficiently done using dedicated software packages. This chapter describes a procedure for designing DNA origami structures using a combination of state-of-the-art software tools. First, we introduce the basic method for calculating crossover positions between DNA helices and the standard crossover patterns for flat, square, and honeycomb DNA origami lattices. Second, we provide a step-by-step tutorial for the design of a simple DNA origami biosensor device, from schematic idea to blueprint creation and to 3D modeling and animation, and explain how careful modeling can facilitate later experimentation in the laboratory.

Key words

DNA Nanotechnology Origami Biosensor CAD Software 



This work was supported by a Sapere Aude Starting Grant from the Danish Council for Independent Research (DFF-0602-01772) and the Centre for DNA Nanotechnology ( funded by the Danish National Research Foundation (DNRF81).


  1. 1.
    Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99(2):237–247PubMedCrossRefGoogle Scholar
  2. 2.
    Seeman NC (2010) Nanomaterials based on DNA. Annu Rev Biochem 79:65–87PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440(7082):297–302PubMedCrossRefGoogle Scholar
  4. 4.
    Qian L et al (2006) Analogic China map constructed by DNA. Chinese Science BulletinGoogle Scholar
  5. 5.
    Andersen ES et al (2008) DNA origami design of dolphin-shaped structures with flexible tails. ACS Nano 2(6):1213–1218PubMedCrossRefGoogle Scholar
  6. 6.
    Sharma J et al (2008) Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold. J Am Chem Soc 130(25):7820–7821PubMedCrossRefGoogle Scholar
  7. 7.
    Ke Y et al (2008) Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays. Science 319(5860):180–183PubMedCrossRefGoogle Scholar
  8. 8.
    Andersen ES et al (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459(7243):73–76PubMedCrossRefGoogle Scholar
  9. 9.
    Douglas SM et al (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245):414–418PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Dietz H, Douglas SM, Shih WM (2009) Folding DNA into twisted and curved nanoscale shapes. Science 325(5941):725–730PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Han D et al (2011) DNA origami with complex curvatures in three-dimensional space. Science 332(6027):342–346PubMedCrossRefGoogle Scholar
  12. 12.
    Han D et al (2013) DNA gridiron nanostructures based on four-arm junctions. Science 339(6126):1412–1415PubMedCrossRefGoogle Scholar
  13. 13.
    Han D et al (2013) Unidirectional scaffold-strand arrangement in DNA origami. Angew Chem Int Ed Engl 52(34):9031–9034PubMedCrossRefGoogle Scholar
  14. 14.
    Wei B, Dai M, Yin P (2012) Complex shapes self-assembled from single-stranded DNA tiles. Nature 485(7400):623–626PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Ke Y et al (2012) Three-dimensional structures self-assembled from DNA bricks. Science 338(6111):1177–1183PubMedCrossRefGoogle Scholar
  16. 16.
    Andersen ES (2010) Prediction and design of DNA and RNA structures. N Biotechnol 27(3):184–193PubMedCrossRefGoogle Scholar
  17. 17.
    Douglas SM et al (2009) Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res 37(15):5001–5006PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Williams S et al (2009) Tiamat: a three-dimensional editing tool for complex DNA structures. In: Goel A, Simmel F, Sosík P (eds) DNA computing. Springer, Berlin, pp 90–101CrossRefGoogle Scholar
  19. 19.
    Zhu J et al (2009) UNIQUIMER 3D, a software system for structural DNA nanotechnology design, analysis and evaluation. Nucleic Acids Res 37(7):2164–2175PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Pettersen EF et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612PubMedCrossRefGoogle Scholar
  21. 21.
    Kim D-NN et al (2012) Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Res 40(7):2862–2868PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Zhang DY, Seelig G (2011) Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem 3(2):103–113PubMedCrossRefGoogle Scholar
  23. 23.
    Zadeh JN et al (2011) NUPACK: analysis and design of nucleic acid systems. J Comput Chem 32(1):170–173PubMedCrossRefGoogle Scholar
  24. 24.
    Ouldridge TE, Louis AA, Doye JP (2011) Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. J Chem Phys 134(8):085101PubMedCrossRefGoogle Scholar
  25. 25.
    Ke Y et al (2009) Multilayer DNA origami packed on a square lattice. J Am Chem Soc 131(43):15903–15908PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Andersen E, Nielsen M (2009) DNA origami design of 3D nanostructuresGoogle Scholar
  27. 27.
    Castro CE et al (2011) A primer to scaffolded DNA origami. Nat Methods 8(3):221–229PubMedCrossRefGoogle Scholar
  28. 28.
    Wang JC (1979) Helical repeat of DNA in solution. Proc Natl Acad Sci U S A 76(1):200–203PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Fu TJ, Seeman NC (1993) DNA double-crossover molecules. Biochemistry 32(13):3211–3220PubMedCrossRefGoogle Scholar
  30. 30.
    Douglas S, Bachelet I, Church G (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6070):831–834PubMedCrossRefGoogle Scholar
  31. 31.
    Ke Y, Voigt NV, Fradkov E, Shih WM (2012) Two design strategies for enhancement of multilayer–DNA-origami folding: underwinding for specific intercalator rescue and staple-break positioning. Chem Sci 3Google Scholar
  32. 32.
    Martin T, Dietz H (2012) Magnesium-free self-assembly of multi-layer DNA objects. Nat Commun 3:1103PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Dirks RM et al (2004) Paradigms for computational nucleic acid design. Nucleic Acids Res 32(4):1392–1403PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Center for DNA Nanotechnology, Interdisciplinary Nanoscience Center, Department of Molecular Biology & GeneticsAarhus UniversityAarhusDenmark
  2. 2.Center for DNA Nanotechnology, Interdisciplinary Nanoscience Center, Department of Molecular Biology & GeneticsAarhus UniversityAarhusDenmark

Personalised recommendations