Skip to main content

Computer-Aided Design of DNA Origami Structures

  • Protocol
  • First Online:
Computational Methods in Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1244))

Abstract

The DNA origami method enables the creation of complex nanoscale objects that can be used to organize molecular components and to function as reconfigurable mechanical devices. Of relevance to synthetic biology, DNA origami structures can be delivered to cells where they can perform complicated sense-and-act tasks, and can be used as scaffolds to organize enzymes for enhanced synthesis. The design of DNA origami structures is a complicated matter and is most efficiently done using dedicated software packages. This chapter describes a procedure for designing DNA origami structures using a combination of state-of-the-art software tools. First, we introduce the basic method for calculating crossover positions between DNA helices and the standard crossover patterns for flat, square, and honeycomb DNA origami lattices. Second, we provide a step-by-step tutorial for the design of a simple DNA origami biosensor device, from schematic idea to blueprint creation and to 3D modeling and animation, and explain how careful modeling can facilitate later experimentation in the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99(2):237–247

    Article  CAS  PubMed  Google Scholar 

  2. Seeman NC (2010) Nanomaterials based on DNA. Annu Rev Biochem 79:65–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440(7082):297–302

    Article  CAS  PubMed  Google Scholar 

  4. Qian L et al (2006) Analogic China map constructed by DNA. Chinese Science Bulletin

    Google Scholar 

  5. Andersen ES et al (2008) DNA origami design of dolphin-shaped structures with flexible tails. ACS Nano 2(6):1213–1218

    Article  CAS  PubMed  Google Scholar 

  6. Sharma J et al (2008) Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold. J Am Chem Soc 130(25):7820–7821

    Article  CAS  PubMed  Google Scholar 

  7. Ke Y et al (2008) Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays. Science 319(5860):180–183

    Article  CAS  PubMed  Google Scholar 

  8. Andersen ES et al (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459(7243):73–76

    Article  CAS  PubMed  Google Scholar 

  9. Douglas SM et al (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245):414–418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Dietz H, Douglas SM, Shih WM (2009) Folding DNA into twisted and curved nanoscale shapes. Science 325(5941):725–730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Han D et al (2011) DNA origami with complex curvatures in three-dimensional space. Science 332(6027):342–346

    Article  CAS  PubMed  Google Scholar 

  12. Han D et al (2013) DNA gridiron nanostructures based on four-arm junctions. Science 339(6126):1412–1415

    Article  CAS  PubMed  Google Scholar 

  13. Han D et al (2013) Unidirectional scaffold-strand arrangement in DNA origami. Angew Chem Int Ed Engl 52(34):9031–9034

    Article  CAS  PubMed  Google Scholar 

  14. Wei B, Dai M, Yin P (2012) Complex shapes self-assembled from single-stranded DNA tiles. Nature 485(7400):623–626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ke Y et al (2012) Three-dimensional structures self-assembled from DNA bricks. Science 338(6111):1177–1183

    Article  CAS  PubMed  Google Scholar 

  16. Andersen ES (2010) Prediction and design of DNA and RNA structures. N Biotechnol 27(3):184–193

    Article  CAS  PubMed  Google Scholar 

  17. Douglas SM et al (2009) Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res 37(15):5001–5006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Williams S et al (2009) Tiamat: a three-dimensional editing tool for complex DNA structures. In: Goel A, Simmel F, Sosík P (eds) DNA computing. Springer, Berlin, pp 90–101

    Chapter  Google Scholar 

  19. Zhu J et al (2009) UNIQUIMER 3D, a software system for structural DNA nanotechnology design, analysis and evaluation. Nucleic Acids Res 37(7):2164–2175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Pettersen EF et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  21. Kim D-NN et al (2012) Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Res 40(7):2862–2868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Zhang DY, Seelig G (2011) Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem 3(2):103–113

    Article  CAS  PubMed  Google Scholar 

  23. Zadeh JN et al (2011) NUPACK: analysis and design of nucleic acid systems. J Comput Chem 32(1):170–173

    Article  CAS  PubMed  Google Scholar 

  24. Ouldridge TE, Louis AA, Doye JP (2011) Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. J Chem Phys 134(8):085101

    Article  PubMed  Google Scholar 

  25. Ke Y et al (2009) Multilayer DNA origami packed on a square lattice. J Am Chem Soc 131(43):15903–15908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Andersen E, Nielsen M (2009) DNA origami design of 3D nanostructures

    Google Scholar 

  27. Castro CE et al (2011) A primer to scaffolded DNA origami. Nat Methods 8(3):221–229

    Article  CAS  PubMed  Google Scholar 

  28. Wang JC (1979) Helical repeat of DNA in solution. Proc Natl Acad Sci U S A 76(1):200–203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Fu TJ, Seeman NC (1993) DNA double-crossover molecules. Biochemistry 32(13):3211–3220

    Article  CAS  PubMed  Google Scholar 

  30. Douglas S, Bachelet I, Church G (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6070):831–834

    Article  CAS  PubMed  Google Scholar 

  31. Ke Y, Voigt NV, Fradkov E, Shih WM (2012) Two design strategies for enhancement of multilayer–DNA-origami folding: underwinding for specific intercalator rescue and staple-break positioning. Chem Sci 3

    Google Scholar 

  32. Martin T, Dietz H (2012) Magnesium-free self-assembly of multi-layer DNA objects. Nat Commun 3:1103

    Article  PubMed Central  PubMed  Google Scholar 

  33. Dirks RM et al (2004) Paradigms for computational nucleic acid design. Nucleic Acids Res 32(4):1392–1403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by a Sapere Aude Starting Grant from the Danish Council for Independent Research (DFF-0602-01772) and the Centre for DNA Nanotechnology (http://cdna.au.dk/) funded by the Danish National Research Foundation (DNRF81).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebbe Sloth Andersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Selnihhin, D., Andersen, E.S. (2015). Computer-Aided Design of DNA Origami Structures. In: Marchisio, M. (eds) Computational Methods in Synthetic Biology. Methods in Molecular Biology, vol 1244. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1878-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1878-2_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1877-5

  • Online ISBN: 978-1-4939-1878-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics