Skip to main content

Analysis of Receptor Tyrosine Kinase (RTK) Phosphorylation by Immunoblotting

  • Protocol
  • First Online:
Receptor Tyrosine Kinases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1233))

  • 2497 Accesses

Abstract

Immunoblotting for phosphorylated forms of receptor tyrosine kinases (RTKs) has been the mainstay of investigations on RTK signaling for the past two decades. Despite the development of quantitative mass spectrometry, reverse-phase protein array, and multiplex technologies, immunoblotting with phospho-specific antibodies is still used in parallel with these technologies and remains a powerful, and reproducible, method for interrogating signaling networks involving RTKs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hubbard SR, Miller WT (2007) Receptor tyrosine kinases: mechanisms of activation and signaling. Curr Opin Cell Biol 19:117–123

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Pawson T (2002) Regulation and targets of receptor tyrosine kinases. Eur J Cancer 38(Suppl 5):S3–S10

    Article  PubMed  Google Scholar 

  4. Kamps MP, Sefton BM (1988) Identification of multiple novel polypeptide substrates of the v-src, v-yes, v-fps, v-ros, and v-erb-B oncogenic tyrosine protein kinases utilizing antisera against phosphotyrosine. Oncogene 2:305–315

    PubMed  CAS  Google Scholar 

  5. Freed E, Hunter T (1992) A 41-kilodalton protein is a potential substrate for the p210bcrabl protein-tyrosine kinase in chronic myelogenous leukemia cells. Mol Cell Biol 12:1312–1323

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Czernik AJ, Girault JA, Nairn AC et al (1991) Production of phosphorylation state-specific antibodies. Methods Enzymol 201:264–283

    Article  PubMed  CAS  Google Scholar 

  7. Wandell JW (2003) Phosphorylation state-specific antibodies: applications in investigative and diagnostic pathology. Am J Pathol 163:1687–1698

    Article  Google Scholar 

  8. Brumbaugh K, Johnson W, Liao WC et al (2011) Overview of the generation, validation, and application of phosphosite-specific antibodies. Methods Mol Biol 717:3–43

    Article  PubMed  CAS  Google Scholar 

  9. Espina V, Edmiston KH, Heiby M et al (2008) A portrait of tissue phosphoprotein stability in the clinical tissue procurement process. Mol Cell Proteomics 7:1998–2018

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Gündisch S, Hauck S, Sarioglu H et al (2012) Variability of protein and phosphoprotein levels in clinical tissue specimens during the preanalytical phase. J Proteome Res 11:5748–5762

    PubMed  Google Scholar 

  11. Mueller C, Edmiston KH, Carpenter C et al (2011) One-step preservation of phosphoproteins and tissue morphology at room temperature for diagnostic and research specimens. PLoS One 6:e23780

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Burns JA, Li Y, Cheney CA, Ou Y et al (2009) Choice of fixative is crucial to successful immunohistochemical detection of phosphoproteins in paraffin-embedded tumor tissues. J Histochem Cytochem 57:257–264

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Kyhse-Andersen J (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 10:203–209

    Article  PubMed  CAS  Google Scholar 

  14. Tovey ER, Baldo BA (1987) Comparison of semi-dry and conventional tank-buffer electrotransfer of proteins from polyacrylamide gels to nitrocellulose membranes. Electrophoresis 8:384–387

    Article  CAS  Google Scholar 

  15. http://www.lifetechnologies.com/order/catalog/product/IB1001

  16. Browne BC, Crown J, Venkatesan N et al (2011) Inhibition of IGF1R activity enhances response to trastuzumab in HER-2-positive breast cancer cells. Ann Oncol 22:68–73

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Irish Research Council, Science Foundation Ireland (08SRCB410), the Health Research Board (CSA/2007/11), and the Cancer Clinical Research Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norma O’Donovan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

McDermott, M., O’Donovan, N. (2015). Analysis of Receptor Tyrosine Kinase (RTK) Phosphorylation by Immunoblotting. In: Germano, S. (eds) Receptor Tyrosine Kinases. Methods in Molecular Biology, vol 1233. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1789-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1789-1_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1788-4

  • Online ISBN: 978-1-4939-1789-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics