Skip to main content

Electron Microscopy Methods for Studying Plasma Membranes

  • Protocol
  • First Online:
Methods in Membrane Lipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1232))

Abstract

Electron microscopy allows direct visualization of the underlying organization of cell surface components on a nano-scale. Immuno-gold labelling of isolated plasma membranes generates point patterns that enable mapping of protein and lipid distributions. 2D spatial statistics reveals the extent to which these distributions are clustered or dispersed and allows the extent of co-localization between different cell surface components to be precisely determined. This approach has been successfully applied to the study of signalling network organization and the consequences of physiological changes in modulating cell surface function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kusumi A, Fujiwara TK, Chadda R, Xie M, Tsunoyama TA et al (2012) Dynamic organizing principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of Singer and Nicolson's fluid-mosaic model. Annu Rev Cell Dev Biol 28:215–250

    Article  PubMed  CAS  Google Scholar 

  2. Parton RG, del Pozo MA (2013) Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 14:98–112

    Article  PubMed  CAS  Google Scholar 

  3. Soboloff J, Rothberg BS, Madesh M, Gill DL (2012) STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 13:549–565

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Insall RH, Machesky LM (2009) Actin dynamics at the leading edge: from simple machinery to complex networks. Dev Cell 17:310–322

    Article  PubMed  CAS  Google Scholar 

  5. Laude AJ, Prior IA (2004) Plasma membrane microdomains: organization, function and trafficking. Mol Membr Biol 21:193–205

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3:a004697

    Article  PubMed  PubMed Central  Google Scholar 

  7. Munro S (2003) Lipid rafts: elusive or illusive? Cell 115:377–388

    Article  PubMed  CAS  Google Scholar 

  8. Prior IA, Muncke C, Parton RG, Hancock JF (2003) Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J Cell Biol 160:165–170

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Prior IA, Parton RG, Hancock JF (2003) Observing cell surface signaling domains using electron microscopy. Sci STKE 2003:PL9

    PubMed  Google Scholar 

  10. Zhang J, Leiderman K, Pfeiffer JR, Wilson BS, Oliver JM et al (2006) Characterizing the topography of membrane receptors and signaling molecules from spatial patterns obtained using nanometer-scale electron-dense probes and electron microscopy. Micron 37:14–34

    Article  PubMed  CAS  Google Scholar 

  11. Wilson BS, Steinberg SL, Liederman K, Pfeiffer JR, Surviladze Z et al (2004) Markers for detergent-resistant lipid rafts occupy distinct and dynamic domains in native membranes. Mol Biol Cell 15:2580–2592

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Cho KJ, Kasai RS, Park JH, Chigurupati S, Heidorn SJ et al (2012) Raf inhibitors target ras spatiotemporal dynamics. Curr Biol 22:945–955

    Article  PubMed  CAS  Google Scholar 

  13. Chapkin RS, Wang N, Fan YY, Lupton JR, Prior IA (2008) Docosahexaenoic acid alters the size and distribution of cell surface microdomains. Biochim Biophys Acta 1778: 466–471

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Slot JW, Geuze HJ (1985) A new method of preparing gold probes for multiple-labeling cytochemistry. Eur J Cell Biol 38:87–93

    PubMed  CAS  Google Scholar 

  15. Besag JE (1977) Contribution to the discussion of Dr Ripley’s paper. J R Stat Soc B39:193–195

    Google Scholar 

  16. Diggle PJ (1986) Displaced amacrine cells in the retina of a rabbit: analysis of a bivariate spatial point pattern. J Neurosci Methods 18:115–125

    Article  PubMed  CAS  Google Scholar 

  17. Ripley BD (1979) Tests of randomness for spatial point patterns J. J R Stat Soc B41: 368–374

    Google Scholar 

  18. Ripley RD (1977) Modelling spatial patterns. J R Stat Soc B39:172–192

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian A. Prior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Beckett, A.J., Prior, I.A. (2015). Electron Microscopy Methods for Studying Plasma Membranes. In: Owen, D. (eds) Methods in Membrane Lipids. Methods in Molecular Biology, vol 1232. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1752-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1752-5_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1751-8

  • Online ISBN: 978-1-4939-1752-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics