Skip to main content

Informatics Tools to Advance the Biology of Glycosaminoglycans and Proteoglycans

  • Protocol
  • First Online:
Glycosaminoglycans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1229))

Abstract

Glycomics researchers have identified the need for integrated database systems for collecting glycomics information in a consistent format. The goal is to create a resource for knowledge discovery and dissemination to wider research communities. This has the potential to extend the research community to include biologists, clinicians, chemists, and computer scientists. This chapter discusses the technology and approach needed to create integrated data resources to empower the broader community to leverage extant glycomics data. The focus is on glycosaminoglycan (GAGs) and proteoglycan research, but the approach can be generalized. The methods described span the development of glycomics standards from CarbBank to Glyco Connection Tables. The existence of integrated data sets provides a foundation for novel methods of analysis such as machine learning for knowledge discovery. The implications of predictive analysis are examined in relation to disease biomarker to expand the target audience of GAG and proteoglycan research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Editorial (2005) Sweet collaborations. Nat Methods 2:799

    Google Scholar 

  2. National Research Council (US) Committee on Assessing the Importance and Impact of Glycomics and Glycosciences (2012) Transforming glycoscience: a roadmap for the future. National Academies Press, Washington, DC

    Google Scholar 

  3. Raman R, Venkataraman M, Ramakrishnan S, Lang W, Raguram S, Sasisekharan R (2006) Advancing glycomics: implementation strategies at the Consortium for Functional Glycomics. Glycobiology 16(5):82R–90R. doi:10.1093/glycob/cwj080

    Article  CAS  PubMed  Google Scholar 

  4. Esko JD, Kimata K, Lindahl U (2009) Proteoglycans and sulfated glycosaminoglycans. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  5. Aoki-kinoshita KF (2008) An introduction to bioinformatics for glycomics research. PLoS Comput Biol 4(5):1–7. doi:10.1371/journal.pcbi.1000075

    Article  Google Scholar 

  6. Raman R, Raguram S, Venkataraman G, Paulson JC, Sasisekharan R (2005) Glycomics: an integrated systems approach to structure-function relationships of glycans. Nat Methods 2(11):817–824. doi:10.1038/NMETH807

    Article  CAS  PubMed  Google Scholar 

  7. Sasisekharan R, Raman R, Prabhakar V (2006) Glycomics approach to structure-function relationships of glycosaminoglycans. Annu Rev Biomed Eng 8:181–231. doi:10.1146/annurev.bioeng.8.061505.095745

    Article  CAS  PubMed  Google Scholar 

  8. Perez S, Mulloy B (2005) Prospects for glycoinformatics. Curr Opin Struct Biol 15:517–524

    Article  CAS  PubMed  Google Scholar 

  9. International Union of Pure and Applied Chemistry (1997) Compendium of analytical nomenclature, 3rd edn. Blackwell Science, Oxford, UK, http://www.chem.qmul.ac.uk/iupac/2carb/38.html. ISBN 86542-6155

    Google Scholar 

  10. Bohne-lang A, Lang E, Fo T (2001) LINUCS: linear notation for unique description of carbohydrate sequences. Carbohydr Res 336:1–11

    Article  CAS  PubMed  Google Scholar 

  11. Aoki-kinoshita K, Yamaguchi A, Ueda N, Akutsu T, Mamitsuka H, Goto S, Kanehisa M (2004) KCaM (KEGG carbohydrate matcher): a software tool for analyzing the structures of carbohydrate sugar chains. Nucleic Acids Res 32:W267–W272

    Article  Google Scholar 

  12. Sahoo SS, Thomas C, Sheth A, Henson C, York WS (2005) GLYDE-an expressive XML standard for the representation of glycan structure. Carbohydr Res 340:2802–2807. doi:10.1016/j.carres.2005.09.019

    Article  CAS  PubMed  Google Scholar 

  13. York WS, Kochut KJ, Miller JA, Sahoo S, Thomas C, Henson C (2007) GLYDE-II–GLYcan structural data exchange using connection tables. University of Georgia Technical Report

    Google Scholar 

  14. Herget S, Ranzinger R, Maass K (2008) GlycoCT–a unifying sequence format for carbohydrates. Carbohydr Res 343:2162–2171. doi:10.1016/j.carres.2008.03.011

    Article  CAS  PubMed  Google Scholar 

  15. Doubet S, Albersheim P (1992) CarbBank. Glycobiology 2(6):505

    Article  CAS  PubMed  Google Scholar 

  16. Doubet S, Bock K, Smith D, Darvill A, Albersheim P (1989) The complex carbohydrate structure database. Trends Biochem Sci 14(12):475–477

    Article  CAS  PubMed  Google Scholar 

  17. Consortium for Functional Glycomics (2013) http://www.functionalglycomics.org/glycomics/molecule/jsp/carbohydrate/carbMoleculeHome.jsp. Accessed 23 Dec 2013

  18. Consortium for Functional Glycomics Binding Proteins (2013) http://www.functionalglycomics.org/glycomics/molecule/jsp/gbpMolecule-home.jsp. Accessed 23 Dec 2013

  19. Lütteke T, Bohne-lang A, Loss A, Goetz T, Frank M, Lieth CW (2006) GLYCOSCIENCES.de: an Internet portal to support glycomics and glycobiology research. Glycobiology 16(5):71–81. doi:10.1093/gly cob/cwj049

  20. Glycoscience.de database (2013) http://www.glycosciences.de/tools/linucs/input.php. Accessed 23 Dec 2013

  21. Hashimoto K, Goto S, Kawano S, Aoki-kinoshita KF, Ueda N, Hamajima M et al (2006) REVIEW KEGG as a glycome informatics resource. Glycobiology 16(5):63–70. doi:10.1093/glycob/cwj010

    Article  Google Scholar 

  22. KEGG GenomeNet (2013) http://www.genome.jp. Accessed 23 Dec 2013

  23. Ranzinger R, Herget S, Wetter T, Lieth CW (2008) GlycomeDB: an integration of open-access carbohydrate structure databases. BMC Bioinformatics 13:1–13. doi:10.1186/1471-2105-9-384

    Google Scholar 

  24. GlycomeDB (2013) http://www.glycome-db.org/showMenu.action?major=downloads. Accessed 23 Dec 2013

  25. Ceroni A, Dell A, Haslam SM (2007) The GlycanBuilder: a fast, intuitive and flexible software tool for building and displaying glycan structures. Source Code Biol Med 13:1–13. doi:10.1186/1751-0473-2-3

    Google Scholar 

  26. Ceroni A, Dell A, Haslam SM (2007) GlycanBuilder. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1994674/bin/1751-0473-2-3-S1.zip. Accessed 23 Dec 2013

  27. GlycosWorkbench (2013) http://code.google.com/p/glycoworkbench/. Accessed 23 Dec 2013

  28. IBM Watson (2013) http://www.research.ibm.com/labs/watson/index.shtml. Accessed 23 Dec 2013

  29. Murdoch TB, Detsky AS (2013) The inevitable application of big data to health care. JAMA 309(13):5–6

    Article  Google Scholar 

  30. Aoki-kinoshita KF (2003) Efficient tree-matching methods for accurate carbohydrate database queries. Genome Inform 143:134–143

    Google Scholar 

  31. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147:195–197

    Article  CAS  PubMed  Google Scholar 

  32. Ueda N, Aoki-kinoshita KF, Yamaguchi A, Akutsu T (2005) A probabilistic model for mining labeled ordered trees: capturing patterns in carbohydrate sugar chains. IEEE Trans Knowl Data Eng 17(8):1051–1064

    Article  Google Scholar 

  33. Aoki-kinoshita KF, Ueda N, Mamitsuka H, Kanehisa M (2006) ProfilePSTMM: capturing tree-structure motifs in carbohydrate sugar chains. Bioinformatics 22(14):25–34. doi:10.1093/bioinformatics/btl244

    Article  Google Scholar 

  34. Kawano S, Hashimoto K, Miyama T, Goto S, Kanehisa M (2005) Prediction of glycan structures from gene expression data based on glycosyltransferase reactions. Bioinformatics 21:3976–3982

    Article  CAS  PubMed  Google Scholar 

  35. Suga A, Yamanishi Y, Hashimoto K, Goto S, Kanehisa M (2007) An improved scoring scheme for predicting glycan structures from gene expression data. Genome Inform 18:237–246

    Article  PubMed  Google Scholar 

  36. Venkataraman G, Shriver Z, Raman R, Sasisekharan R (1999) Sequencing complex polysaccharides. Science 286:537–542

    Article  CAS  PubMed  Google Scholar 

  37. Shriver Z, Raman R, Venkataraman G, Drummond K, Turnbull J et al (2000) Sequencing of 3-O sulfate containing heparin decasaccharides with a partial antithrombin III binding site. Proc Natl Acad Sci U S A 97:10359–10364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Guerrini M, Raman R, Venkataraman G, Torri G, Sasisekharan R, Casu B (2002) A novel computational approach to integrate NMR spectroscopy and capillary electrophoresis for structure assignment of heparin and heparan sulfate oligosaccharides. Glycobiology 12:713–719

    Article  CAS  PubMed  Google Scholar 

  39. Maxwell E, Tan Y, Tan Y, Hu H, Benson G, Aizikov K et al (2012) GlycReSoft: a software package for automated recognition of glycans from LC/MS data. PLoS One 7(9):e45474. doi:10.1371/journal.pone.0045474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Li L, Zhang F, Zaia J, Linhardt RJ (2012) Top-down approach for the direct characterization of low molecular weight heparins using LC-FT-MS. Anal Chem 84:8822–8829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Lieth CW, Bohne-Lang A, Lohmann KK, Frank M (2004) Bioinformatics for glycomics: status, methods, requirements, and perspectives. Brief Bioinform 5:164–178

    Article  PubMed  Google Scholar 

  42. Lieth CW, Lutteke T, Frank M (2006) The role of informatics in glycobiology research with special emphasis on automatic interpretation of MS spectra. Biochim Biophys Acta 1760:568–577

    Article  PubMed  Google Scholar 

  43. Lütteke T, Frank M, von der Lieth CW (2005) Carbohydrate structure suite (CSS): analysis of carbohydrate 3D structures derived from the PDB. Nucleic Acids Res 33:D242–D246

    Article  PubMed Central  PubMed  Google Scholar 

  44. Wang H, Julenius K, Hryhorenko J et al (2007) Systematic analysis of proteoglycan modification sites in caenorhabditis elegans by scanning mutagenesis. J Biol Chem. doi:10.1074/jbc.M609193200

    Google Scholar 

  45. Shao C, Shi X, White M, Huang Y, Hartshorn K, Zaia J (2013) Comparative glycomics of leukocyte glycosaminoglycans. FEBS J 280:2447–2461. doi:10.1111/febs.12231

    Article  CAS  PubMed  Google Scholar 

  46. Konishi Y, Aoki-kinoshita KF (2012) The GlycomeAtlas tool for visualizing and querying glycome data. Bioinformatics 28(21):2849–2850. doi:10.1093/bioinformatics/bts516

    Article  CAS  PubMed  Google Scholar 

  47. Shi X, Zaia J (2009) Organ-specific heparan sulfate structural phenotypes. J Biol Chem 284:11806–11814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Smetsers TFCM, Westerlo EMA, Dam GB et al (2003) Localization and characterization of melanoma-associated glycosaminoglycans: differential expression of chondroitin and heparan sulfate epitopes in melanoma localization and characterization of melanoma-associated glycosaminoglycans. Cancer Res 63:2965–2970

    CAS  PubMed  Google Scholar 

  49. Suarez ER, Paredes-gamero EJ, Giglio AD, Luis I, Nader HB, Aparecida M et al (2013) Heparan sulfate mediates trastuzumab effect in breast cancer cells. BMC Cancer 13(1):444. doi:10.1186/1471-2407-13-444

    Article  PubMed Central  PubMed  Google Scholar 

  50. Gomes AM, Stelling MP, Pavao MSG (2013) Heparan sulfate and heparanase as modulators of breast cancer progression. Biomed Res Int. 11 pgs. http://dx.doi.org/10.1155/2013/852093

  51. Packer NH, von der Lieth CW, Aoki-Kinoshita KF, Lebrilla CB, Paulson JC et al (2008) Frontiers in glycomics: bioinformatics and biomarkers in disease. Proteomics 8:8–20

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis J. Frey Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Frey, L.J. (2015). Informatics Tools to Advance the Biology of Glycosaminoglycans and Proteoglycans. In: Balagurunathan, K., Nakato, H., Desai, U. (eds) Glycosaminoglycans. Methods in Molecular Biology, vol 1229. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1714-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1714-3_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1713-6

  • Online ISBN: 978-1-4939-1714-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics