Skip to main content

Monitoring Opioid Receptor Dimerization in Living Cells by Bioluminescence Resonance Energy Transfer (BRET)

  • Protocol
  • First Online:
Opioid Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1230))

Abstract

Bioluminescence resonance energy transfer (BRET) is a natural phenomenon that has been successfully applied for the study of protein–protein interactions, including opioid receptor oligomers. The discovery of opioid receptor homomers and heteromers has brought to the finding of new functions and new way of signaling and trafficking; therefore, opioid receptor oligomers may be considered as novel drug targets. Fusing receptors of interest with Renilla luciferase and with a fluorescent protein (such as EYFP), it is possible to study opioid receptor dimerization using BRET.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bacart J, Corbel C, Jockers R et al (2008) The BRET technology and its application to screening assays. Biotechnol J 3:311–324

    Article  PubMed  CAS  Google Scholar 

  2. Lohse MJ, Nuber S, Hoffmann C (2012) Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev 64:299–336

    Article  PubMed  CAS  Google Scholar 

  3. Ferré S, Navarro G, Casadó V et al (2010) G protein-coupled receptor heteromers as new targets for drug development. Prog Mol Biol Transl Sci 91:41–52

    Article  PubMed  Google Scholar 

  4. Hart RC, Stempel KE, Boyer PD et al (1978) Mechanism of the enzyme-catalyzed bioluminescent oxidation of coelenteratetype luciferin. Biochem Biophys Res Commun 81:980–986

    Article  PubMed  CAS  Google Scholar 

  5. Wilson T, Hastings JW (1998) Bioluminescence. Annu Rev Cell Dev Biol 14:197–230

    Article  PubMed  CAS  Google Scholar 

  6. Ayoub MA, Pfleger KD (2010) Recent advances in bioluminescence resonance energy transfer technologies to study GPCR heteromerization. Curr Opin Pharmacol 10:44–52

    Article  PubMed  CAS  Google Scholar 

  7. Pfleger KD, Dromey JR, Dalrymple MB et al (2006) Extended bioluminescence resonance energy transfer (eBRET) for monitoring prolonged protein–protein interactions in live cells. Cell Signal 18:1664–1670

    Article  PubMed  CAS  Google Scholar 

  8. Pfleger KD (2009) Analysis of protein–protein interactions using bioluminescence resonance energy transfer. Methods Mol Biol 574: 173–183

    Article  PubMed  CAS  Google Scholar 

  9. Pfleger KD, Eidne KA (2003) New technologies: bioluminescence resonance energy transfer (BRET) for the detection of real time interactions involving G-protein coupled receptors. Pituitary 6:141–151

    Article  PubMed  CAS  Google Scholar 

  10. Wang D, Sun X, Bohn LM et al (2005) Opioid receptor homo- and heterodimerization in living cells by quantitative bioluminescence resonance energy transfer. Mol Pharmacol 67: 2173–2184

    Article  PubMed  CAS  Google Scholar 

  11. Gomes I, Filipovska J, Jordan BA et al (2002) Oligomerization of opioid receptors. Methods 27:358–365

    Article  PubMed  CAS  Google Scholar 

  12. George SR, Fan T, Xie Z et al (2000) Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. J Biol Chem 275:26128–26135

    Article  PubMed  CAS  Google Scholar 

  13. van Rijn RM, Whistler JL, Waldhoer M (2010) Opioid-receptor-heteromer-specific trafficking and pharmacology. Curr Opin Pharmacol 10: 73–79

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pan YX, Bolan E, Pasternak GW (2002) Dimerization of morphine and orphanin FQ/nociceptin receptors: generation of a novel opioid receptor subtype. Biochem Biophys Res Commun 297:659–663

    Article  PubMed  CAS  Google Scholar 

  15. McVey M, Ramsay D, Kellett E et al (2001) Monitoring receptor oligomerization using time resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer. The human delta opioid receptor displays constitutive oligomerization at the cell surface, which is not regulated by receptor occupancy. J Biol Chem 276:14092–14099

    PubMed  CAS  Google Scholar 

  16. Rios C, Gomes I, Devi LA (2006) mu opioid and CB1 cannabinoid receptor interactions: reciprocal inhibition of receptor signaling and neuritogenesis. Br J Pharmacol 148:387–395

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Kocan M, See HB, Seeber RM et al (2008) Demonstration of improvements to the bioluminescence resonance energy transfer (BRET) technology for the monitoring of G protein-coupled receptors in live cells. J Biomol Screen 13:888–898

    Article  PubMed  CAS  Google Scholar 

  18. Li Y, Chen J, Bai B et al (2012) Heterodimerization of human apelin and kappa opioid receptors: roles in signal transduction. Cell Signal 24:991–1001

    Article  PubMed  CAS  Google Scholar 

  19. Li F, Yu J, Zhang Z et al (2012) Buffer enhanced bioluminescence resonance energy transfer sensor based on Gaussia luciferase for in vitro detection of protease. Anal Chim Acta 724:104–110

    Article  PubMed  CAS  Google Scholar 

  20. Couturier C, Deprez B (2012) Setting up a bioluminescence resonance energy transfer high throughput screening assay to search for protein/protein interaction inhibitors in mammalian cells. Front Endocrinol (Lausanne) 3:1–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Baiula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Baiula, M. (2015). Monitoring Opioid Receptor Dimerization in Living Cells by Bioluminescence Resonance Energy Transfer (BRET). In: Spampinato, S. (eds) Opioid Receptors. Methods in Molecular Biology, vol 1230. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1708-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1708-2_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1707-5

  • Online ISBN: 978-1-4939-1708-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics