Skip to main content

Application of FCS in Studies of Rhinovirus Receptor Binding and Uncoating

  • Protocol
  • First Online:
Rhinoviruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1221))

Abstract

Fluorescence correlation spectroscopy (FCS) allows determining diffusion and relaxation properties of fluorescent molecules. It requires only extremely small amounts of sample, down to picomolar concentrations, in an effective analysis volume of a few femtoliters. In essence, FCS determines the autocorrelation of fluorescence fluctuations caused by single labeled molecules passing through the confocal volume of a microscope equipped with a suitable detector; it permits investigating interactions of (macro)molecules, even in single cells. We present an FCS protocol for exploring, under in vitro conditions, the dynamic processes that take place during the early steps of virus infection. We cover two important issues of rhinovirus research, the kinetics of directional RNA release, and virus-receptor interactions exemplified by using human rhinovirus type A2 (HRV-A2) as a model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:29–61

    Article  PubMed  CAS  Google Scholar 

  2. Rigler R, Widengren J (1990) Ultrasensitive detection of single molecules by fluorescence correlation spectroscopy. Bioscience 3:180–183

    Google Scholar 

  3. Haustein E (2007) Fluorescence correlation spectroscopy: novel variations of an established technique. Annu Rev Biophys Biomol Struct 36:151–169

    Article  PubMed  CAS  Google Scholar 

  4. Gosch M, Rigler R (2005) Fluorescence correlation spectroscopy of molecular motions and kinetics. Adv Drug Deliv Rev 57:169–190

    Article  PubMed  Google Scholar 

  5. Krieger J, Tódt K, Langowski J. “Biophysics of Macromolecules (B040): Practical Course Biophysics: Fluorescence Correlation Spectroscopy” http://www.dkfz.de/Macromol/teaching/files/fcs_practical.pdf

  6. Krichevsky O, Bonnet G (2002) Fluorescence correlation spectroscopy: the technique and its applications. Rep Prog Phys 65:251–289

    Article  CAS  Google Scholar 

  7. Harutyunyan S, Kumar M, Sedivy A et al (2013) Viral uncoating is directional: exit of the genomic RNA in a common cold virus starts with the poly-(A) tail at the 3′-end. PLoS Pathog 9:e1003270. doi:10.1371/journal.ppat.1003270

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Wruss J, Rünzler D, Steiger C et al (2007) Attachment of VLDL receptors to an icosahedral virus along the 5-fold symmetry axis: Multiple binding modes evidenced by fluorescence correlation spectroscopy. Biochemistry 46:6331–6339

    Article  PubMed  CAS  Google Scholar 

  9. Duechler M, Skern T, Blaas D et al (1989) Human rhinovirus serotype 2: in vitro synthesis of an infectious RNA. Virology 168:159–161

    Article  PubMed  CAS  Google Scholar 

  10. Kremser L, Konecsni T, Blaas D et al (2004) Fluorescence labeling of human rhinovirus capsid and analysis by capillary electrophoresis. Anal Chem 76:4175–4181

    Article  PubMed  CAS  Google Scholar 

  11. Rye HS, Yue S, Wemmer DE et al (1992) Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: properties and applications. Nucleic Acids Res 20:2803–2812

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Meseth UWT, Rigler R, Vogel H (1999) Resolution of fluorescence correlation measurements. Biophys J 76:1619–1631

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Blaas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Harutyunyan, S., Sedivy, A., Köhler, G., Kowalski, H., Blaas, D. (2015). Application of FCS in Studies of Rhinovirus Receptor Binding and Uncoating. In: Jans, D., Ghildyal, R. (eds) Rhinoviruses. Methods in Molecular Biology, vol 1221. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1571-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1571-2_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1570-5

  • Online ISBN: 978-1-4939-1571-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics