Skip to main content

Incorporation of Modified and Artificial Cofactors into Naturally Occurring Protein Scaffolds

  • Protocol
  • First Online:
Protein Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1216))

Abstract

As a possible modification of cofactor-containing proteins, cofactor-substitution typically leads to drastic changes of protein function. In particular heme, a porphyrin iron complex, is a representative, replaceable cofactor for this methodology and numerous cofactor-modified hemoproteins (reconstituted hemoproteins) have been prepared with the goal of elucidating their operational mechanism and/or engineering the protein function. In a series of hemoproteins, myoglobin, an oxygen storage hemoprotein, is one of the most rewarding scaffolds to generate a modified protein with an artificial cofactor. In this chapter, we describe practical procedures for the preparation of apomyoglobin and incorporation of zinc porphyrin as an artificial cofactor. Furthermore, we discuss the methodology to characterize the obtained cofactor-substituted proteins and the design of several artificial cofactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayashi T, Hisaeda Y (2002) New functionalization of myoglobin by chemical modification of heme-propionates. Acc Chem Res 35:35–43

    Article  PubMed  CAS  Google Scholar 

  2. Fruk L, Kuo C-H, Torres E, Niemeyer CM (2009) Apoenzyme reconstitution as a chemical tool for structural enzymology and biotechnology. Angew Chem Int Ed 48:1550–1574

    Article  CAS  Google Scholar 

  3. Hefti MH, Vervoort J, van Berkel WJH (2003) Deflavination and reconstitution of flavoproteins. Eur J Biochem 270:4227–4242

    Article  PubMed  CAS  Google Scholar 

  4. Zhou K, Oetterli RM, Brandl H, Lyatuu FE, Buckel W, Zelder F (2012) Chemistry and bioactivity of an artificial adenosylpeptide B12 cofactor. ChemBioChem 13:2052–2055

    Article  PubMed  CAS  Google Scholar 

  5. La Mar GN, Pande U, Hauksson JB, Pandey RK, Smith KM (1989) Proton nuclear magnetic resonance investigation of the mechanism of the reconstitution of myoglobin that leads to metastable heme orientational disorder. J Am Chem Soc 111:485–491

    Article  Google Scholar 

  6. Ward TR (2009) Top organomet chem, Bio inspired catalysts. Springer, Berlin

    Google Scholar 

  7. Willner B, Katz E, Willner I (2006) Electrical contacting of redox proteins by nanotechnological means. Curr Opin Biotechnol 17: 589–596

    Article  PubMed  CAS  Google Scholar 

  8. Hayashi T (2013) Generation of functionalized biomolecules using hemoprotein matrices with small protein cavities for incorporation of cofactors. In: Ueno T, Watanabe Y (eds) Coordination chemistry in protein cages: principles, design, and applications. Wiley, Hoboken, pp 87–110

    Chapter  Google Scholar 

  9. Hargrove MS, Wilkinson AJ, Olson JS (1996) Structural factors governing hemin dissociation from metmyoglobin. Biochemistry 35:11300–11309

    Article  PubMed  CAS  Google Scholar 

  10. Teale FW (1959) Cleavage of the haem-protein link by acid methylethylketone. Biochim Biophys Acta 35:543

    Article  PubMed  CAS  Google Scholar 

  11. Asoli F, Fanelli MR, Antonini E (1981) Preparation and properties of apohemoglobin and reconstituted hemoglobins. Methods Enzymol 76:72–87

    Article  Google Scholar 

  12. Wagner GC, Perez M, Toscano WA Jr, Gunsalus IC (1981) Apoprotein formation and heme reconstitution of cytochrome P-450cam. J Biol Chem 256:6262–6265

    PubMed  CAS  Google Scholar 

  13. Ator MA, David SK, Ortiz de Montellano PR (1989) Stabilized isoporphyrin intermediates in the inactivation of horseradish peroxidase by alkylhydrazines. J Biol Chem 264:9250–9257

    PubMed  CAS  Google Scholar 

  14. Matsuo T, Murata D, Hisaeda Y, Hori H, Hayashi T (2007) Porphyrinoid chemistry in hemoprotein matrix: detection and reactivities of iron(IV)-oxo species of porphycene incorporated into horseradish peroxidase. J Am Chem Soc 129:12906–12907

    Article  PubMed  CAS  Google Scholar 

  15. Itagaki E, Palmer G, Hager LP (1967) Studies on cytochrome b 562 of Escherichia coli. II. Reconstitution of cytochrome b 562 from apoprotein and hemin. J Biol Chem 242: 2272–2277

    PubMed  CAS  Google Scholar 

  16. Matsuo T, Fukumoto K, Watanabe T, Hayashi T (2011) Precise design of artificial cofactors for enhancing peroxidase activity of myoglobin: myoglobin mutant H64D reconstituted with a “single-winged cofactor” is equivalent to native horseradish peroxidase in oxidation activity. Chem Asian J 6:2491–2499

    Article  PubMed  CAS  Google Scholar 

  17. Hayashi T, Dejima H, Matsuo T, Sato H, Murata D, Hisaeda Y (2002) Blue myoglobin reconstituted with an iron porphycene shows extremely high oxygen affinity. J Am Chem Soc 124:11226–11227

    Article  PubMed  CAS  Google Scholar 

  18. Ueno T, Koshiyama T, Ohashi M, Kondo K, Kono M, Suzuki A et al (2005) Coordinated design of cofactor and active site structures in development of new protein catalysts. J Am Chem Soc 127:6556–6562

    Article  PubMed  CAS  Google Scholar 

  19. Patolsky F, Weizmann Y, Willner I (2004) Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew Chem Int Ed 43:2113–2117

    Article  CAS  Google Scholar 

  20. Onoda A, Kakikura Y, Uematsu T, Kuwabata S, Hayashi T (2012) Photocurrent generation from hierarchical zinc-substituted hemoprotein assemblies immobilized on a gold electrode. Angew Chem Int Ed 51: 2628–2631

    Article  CAS  Google Scholar 

  21. Kitagishi H, Oohora K, Yamaguchi H, Sato H, Matsuo T, Harada A et al (2007) Supramolecular hemoprotein linear assembly by successive interprotein heme–heme pocket interactions. J Am Chem Soc 129:10326–10327

    Article  PubMed  CAS  Google Scholar 

  22. Oohora K, Onoda A, Hayashi T (2012) Supramolecular assembling systems formed by heme–heme pocket interactions in hemoproteins. Chem Commun 48:11714–11726

    Article  CAS  Google Scholar 

  23. Shibata T, Matsumoto D, Nishimura R, Tai H, Matsuoka A, Nagao S et al (2012) Relationship between oxygen affinity and autoxidation of myoglobin. Inorg Chem 51:11955–11960

    Article  PubMed  CAS  Google Scholar 

  24. Smith KM (1975) Porphyrins and metalloporphyrins. Elsevier, Amsterdam

    Google Scholar 

  25. Fändrich M, Forge V, Buder K, Kittler M, Dobson CM, Diekmann S (2003) Myoglobin forms amyloid fibrils by association of unfolded polypeptide segments. Proc Natl Acad Sci U S A 100:15463–15468

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The preparation of this chapter was supported by Grants-in-Aid for Scientific Research from MEXT and JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Oohora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Oohora, K., Hayashi, T. (2014). Incorporation of Modified and Artificial Cofactors into Naturally Occurring Protein Scaffolds. In: Köhler, V. (eds) Protein Design. Methods in Molecular Biology, vol 1216. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1486-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1486-9_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1485-2

  • Online ISBN: 978-1-4939-1486-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics