Skip to main content

Adipose-Derived Stem Cells: Methods for Isolation and Applications for Clinical Use

  • Protocol
  • First Online:
Stem Cells and Tissue Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1210))

Abstract

Adipose tissue sciences have rapidly expanded since the identification of regenerative cells contained within the stromal vascular fraction (SVF) of fat. Isolation of the SVF, containing adipose-derived stem cells (ADSC), can be accomplished efficiently in the operating room or in the laboratory through enzymatic digestion of the adipose tissue and concentration of SVF. Cells can be directly re-injected as a mesotherapeutic agent, recombined with a tissue scaffold (e.g., cell-enriched fat grafts) or expanded in culture for tissue-engineered cell therapeutics. The potential for cell therapy is under current investigation by researchers around the world. This chapter reviews laboratory methods for isolating ADSCs and the ongoing clinical trials evaluating cell therapeutic efficacy across many specialties, including cardiology, neurology, immunology, tissue engineering, sports medicine, and plastic and reconstructive surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  CAS  PubMed  Google Scholar 

  3. Koehler KR, Mikosz AM, Molosh AI, Patel D, Hashino E (2013) Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature 500:217–221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Mirsaidi A, Kleinhans KN, Rimann M, Tiaden AN, Stauber M et al (2012) Telomere length, telomerase activity and osteogenic differentiation are maintained in adipose-derived stromal cells from senile osteoporotic SAMP6 mice. J Tissue Eng Regen Med 6:378–390

    Article  CAS  PubMed  Google Scholar 

  5. Coleman SR (2006) Structural fat grafting: more than a permanent filler. Plast Reconstr Surg 118:108S–120S

    Article  CAS  PubMed  Google Scholar 

  6. Coleman SR, Saboeiro AP (2007) Fat grafting to the breast revisited: safety and efficacy. Plast Reconstr Surg 119:775–785, discussion 786-777

    Article  CAS  PubMed  Google Scholar 

  7. Adam D, Young BM, Baker J, Wallace AM, Christman KL (2013) Adipose tissue engineering and stem cells. In: Li S, Heureux NL, Eliseef J (eds) Stem cell and tissue engineering, 2nd edn. World Scientific Publishing Co. Pvt. Ltd., Hackensack, NJ

    Google Scholar 

  8. Napolitano L (1963) The differentiation of white adipose cells. An electron microscope study. J Cell Biol 18:663–679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Peinado JR, Pardo M, de la Rosa O, Malagon MM (2012) Proteomic characterization of adipose tissue constituents, a necessary step for understanding adipose tissue complexity. Proteomics 12:607–620

    Article  CAS  PubMed  Google Scholar 

  10. Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative medicine. Circ Res 100:1249–1260

    Article  CAS  PubMed  Google Scholar 

  11. Levi B, Glotzbach JP, Sorkin M, Hyun J, Januszyk M et al (2013) Molecular analysis and differentiation capacity of adipose-derived stem cells from lymphedema tissue. Plast Reconstr Surg 132:580–589

    Article  CAS  PubMed  Google Scholar 

  12. Wosnitza M, Hemmrich K, Groger A, Graber S, Pallua N (2007) Plasticity of human adipose stem cells to perform adipogenic and endothelial differentiation. Differentiation 75:12–23

    Article  CAS  PubMed  Google Scholar 

  13. Planat-Bénard V, Menard C, André M, Puceat M, Perez A et al (2004) Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res 94:223–229

    Article  PubMed  Google Scholar 

  14. Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F et al (2009) Rapid hepatic fate specification of adipose-derived stem cells and their therapeutic potential for liver failure. J Gastroenterol Hepatol 24:70–77

    Article  CAS  PubMed  Google Scholar 

  15. Qian D-X, Zhang H-T, Ma X, Jiang X-D, Xu R-X (2010) Comparison of the efficiencies of three neural induction protocols in human adipose stromal cells. Neurochem Res 35: 572–579

    Article  CAS  PubMed  Google Scholar 

  16. Sachs PC, Francis MP, Zhao M, Brumelle J, Rao RR et al (2012) Defining essential stem cell characteristics in adipose-derived stromal cells extracted from distinct anatomical sites. Cell Tissue Res 349:505–515

    Article  PubMed Central  PubMed  Google Scholar 

  17. Jeon B-G, Kumar BM, Kang E-J, Ock S-A, Lee S-L et al (2011) Characterization and comparison of telomere length, telomerase and reverse transcriptase activity and gene expression in human mesenchymal stem cells and cancer cells of various origins. Cell Tissue Res 345: 149–161

    Article  CAS  PubMed  Google Scholar 

  18. Trojahn Kolle SF, Oliveri RS, Glovinski PV, Elberg JJ, Fischer-Nielsen A et al (2012) Importance of mesenchymal stem cells in autologous fat grafting: a systematic review of existing studies. J Plast Surg Hand Surg 46: 59–68

    Article  PubMed  Google Scholar 

  19. Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z et al (2005) Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med 54:132–141

    Article  CAS  PubMed  Google Scholar 

  20. Mailey B, Saba S, Baker J, Tokin C, Hickey S et al. (2013) A comparison of cell-enriched fat transfer to conventional fat grafting after aesthetic procedures using a patient satisfaction survey. Ann Plast Surg

    Google Scholar 

  21. Fukumura D, Ushiyama A, Duda DG, Xu L, Tam J et al (2003) Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis. Circ Res 93:e88–e97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Teng YD, Benn SC, Kalkanis SN, Shefner JM, Onario RC et al (2012) Multimodal actions of neural stem cells in a mouse model of ALS: a meta-analysis. Sci Transl Med 4:165ra164

    Article  PubMed  Google Scholar 

  23. Cayre M, Canoll P, Goldman JE (2009) Cell migration in the normal and pathological postnatal mammalian brain. Prog Neurobiol 88: 41–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Perrot P, Rousseau J, Bouffaut AL, Redini F, Cassagnau E et al (2010) Safety concern between autologous fat graft, mesenchymal stem cell and osteosarcoma recurrence. PLoS One 5:e10999

    Article  PubMed Central  PubMed  Google Scholar 

  25. Zimmerlin L, Donnenberg AD, Rubin JP, Basse P, Landreneau RJ et al (2011) Regenerative therapy and cancer: in vitro and in vivo studies of the interaction between adipose-derived stem cells and breast cancer cells from clinical isolates. Tissue Eng Part A 17:93–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Delay E, Garson S, Tousson G, Sinna R (2009) Fat injection to the breast: technique, results, and indications based on 880 procedures over 10 years. Aesthet Surg J 29:360–376

    Article  PubMed  Google Scholar 

  27. Cuadra A, Correa G, Roa R, Pineros JL, Norambuena H et al (2011) Functional results of burned hands treated with Integra(R). J Plast Reconstr Aesthet Surg 65:228–234

    Article  PubMed  Google Scholar 

  28. Jones I, Currie L, Martin R (2002) A guide to biological skin substitutes. Br J Plast Surg 55: 185–193

    Article  CAS  PubMed  Google Scholar 

  29. Woof JM, Burton DR (1988) Microassay for measurement of binding of radiolabelled ligands to cell surface molecules. J Immunol Methods 111:205–207

    Article  CAS  PubMed  Google Scholar 

  30. Badylak SF, Tullius R, Kokini K, Shelbourne KD, Klootwyk T et al (1995) The use of xenogeneic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model. J Biomed Mater Res 29:977–985

    Article  CAS  PubMed  Google Scholar 

  31. Hemmrich K, von Heimburg D, Cierpka K, Haydarlioglu S, Pallua N (2005) Optimization of the differentiation of human preadipocytes in vitro. Differentiation 73:28–35

    Article  CAS  PubMed  Google Scholar 

  32. Hemmrich K, Kappel BA, Paul NE, Goy D, Luckhaus C et al (2011) Antipsychotic drugs increase adipose stem cell differentiation – implications for treatment with antipsychotic drugs. J Clin Psychopharmacol 31:663–665

    Article  PubMed  Google Scholar 

  33. Thomas GP, Hemmrich K, Abberton KM, McCombe D, Penington AJ et al (2008) Zymosan-induced inflammation stimulates neo-adipogenesis. Int J Obes (Lond) 32: 239–248

    Article  CAS  Google Scholar 

  34. Hemmrich K, Thomas GP, Abberton KM, Thompson EW, Rophael JA et al (2007) Monocyte chemoattractant protein-1 and nitric oxide promote adipogenesis in a model that mimics obesity. Obesity (Silver Spring) 15:2951–2957

    Article  CAS  Google Scholar 

  35. Khouri RK, Schlenz I, Murphy BJ, Baker TJ (2000) Nonsurgical breast enlargement using an external soft-tissue expansion system. Plast Reconstr Surg 105:2500–2512, discussion 2513-2504

    Article  CAS  PubMed  Google Scholar 

  36. Slavin SA (2000) Nonsurgical breast enlargement using an external soft-tissue expansion system. Plast Reconstr Surg 105:2513–2514

    Article  PubMed  Google Scholar 

  37. Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE et al (2008) Clinical transplantation of a tissue-engineered airway. Lancet 372:2023–2030

    Article  PubMed  Google Scholar 

  38. Jungebluth P, Alici E, Baiguera S, Le Blanc K, Blomberg P et al (2011) Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite: a proof-of-concept study. Lancet 378:1997–2004

    Article  CAS  PubMed  Google Scholar 

  39. Perin EC, Silva GV, Henry TD, Cabreira-Hansen MG, Moore WH et al (2011) A randomized study of transendocardial injection of autologous bone marrow mononuclear cells and cell function analysis in ischemic heart failure (FOCUS-HF). Am Heart J 161(1078): 1087.e1073

    Google Scholar 

  40. Piacibello W, Gammaitoni L, Pignochino Y (2005) Proliferative senescence in hematopoietic stem cells during ex-vivo expansion. Folia Histochem Cytobiol 43:197–202

    CAS  PubMed  Google Scholar 

  41. Willerson JT, Perin EC, Ellis SG, Pepine CJ, Henry TD et al (2010) Intramyocardial injection of autologous bone marrow mononuclear cells for patients with chronic ischemic heart disease and left ventricular dysfunction (First Mononuclear Cells injected in the US [FOCUS]): rationale and design. Am Heart J 160:215–223

    Article  PubMed Central  PubMed  Google Scholar 

  42. Mackie AR, Losordo DW (2011) CD34-positive stem cells: in the treatment of heart and vascular disease in human beings. Tex Heart Inst J 38:474–485

    PubMed Central  PubMed  Google Scholar 

  43. Uccelli A, Laroni A, Freedman MS (2013) Mesenchymal stem cells as treatment for MS - progress to date. Mult Scler 19:515–519

    Article  PubMed  Google Scholar 

  44. Guild WR, Harrison JH, Merrill JP, Murray J (1955) Successful homotransplantation of the kidney in an identical twin. Trans Am Clin Climatol Assoc 67:167–173

    PubMed  Google Scholar 

  45. Hui-Chou HG, Nam AJ, Rodriguez ED (2010) Clinical facial composite tissue allotransplantation: a review of the first four global experiences and future implications. Plast Reconstr Surg 125:538–546

    Article  CAS  PubMed  Google Scholar 

  46. Cohen SR, Mailey B (2012) Adipocyte-derived stem and regenerative cells in facial rejuvenation. Clin Plast Surg 39:453–464

    Article  PubMed  Google Scholar 

  47. Coleman WP 3rd (1991) Autologous fat transplantation. Plast Reconstr Surg 88:736

    Article  PubMed  Google Scholar 

  48. Lee SK, Kim DW, Dhong ES, Park SH, Yoon ES (2012) Facial soft tissue augmentation using autologous fat mixed with stromal vascular fraction. Arch Plast Surg 39:534–539

    Article  PubMed Central  PubMed  Google Scholar 

  49. Jin R, Zhang L, Zhang YG (2013) Does platelet-rich plasma enhance the survival of grafted fat? An update review. Int J Clin Exp Med 6:252–258

    PubMed Central  PubMed  Google Scholar 

  50. Koh KS, Oh TS, Kim H, Chung IW, Lee KW et al (2012) Clinical application of human adipose tissue-derived mesenchymal stem cells in progressive hemifacial atrophy (Parry-Romberg disease) with microfat grafting techniques using 3-dimensional computed tomography and 3-dimensional camera. Ann Plast Surg 69:331–337

    Article  CAS  PubMed  Google Scholar 

  51. Wahlgren N, Ahmed N, Davalos A, Ford GA, Grond M et al (2007) Thrombolysis with alteplase for acute ischaemic stroke in the Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST): an observational study. Lancet 369:275–282

    Article  CAS  PubMed  Google Scholar 

  52. Yang YC, Liu BS, Shen CC, Lin CH, Chiao MT et al (2011) Transplantation of adipose tissue-derived stem cells for treatment of focal cerebral ischemia. Curr Neurovasc Res 8:1–13

    Article  PubMed  Google Scholar 

  53. Sharma S, Yang B, Strong R, Xi X, Brenneman M et al (2010) Bone marrow mononuclear cells protect neurons and modulate microglia in cell culture models of ischemic stroke. J Neurosci Res 88:2869–2876

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Savitz SI, Misra V, Kasam M, Juneja H, Cox CS Jr et al (2011) Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann Neurol 70:59–69

    Article  PubMed  Google Scholar 

  55. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U et al (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33: 1402–1416

    Article  CAS  PubMed  Google Scholar 

  56. Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F et al (2008) IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury. Stem Cells 26:2705–2712

    Article  CAS  PubMed  Google Scholar 

  57. Leu S, Lin YC, Yuen CM, Yen CH, Kao YH et al (2010) Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. J Transl Med 8:63

    Article  PubMed Central  PubMed  Google Scholar 

  58. Hauser RA, Freeman TB, Snow BJ, Nauert M, Gauger L et al (1999) Long-term evaluation of bilateral fetal nigral transplantation in Parkinson disease. Arch Neurol 56:179–187

    Article  CAS  PubMed  Google Scholar 

  59. Cicchetti F, Saporta S, Hauser RA, Parent M, Saint-Pierre M et al (2009) Neural transplants in patients with Huntington’s disease undergo disease-like neuronal degeneration. Proc Natl Acad Sci U S A 106:12483–12488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Pecanha R, Bagno LL, Ribeiro MB, Robottom Ferreira AB, Moraes MO et al (2012) Adipose-derived stem-cell treatment of skeletal muscle injury. J Bone Joint Surg Am 94:609–617

    Article  PubMed  Google Scholar 

  61. Sacco A, Mourkioti F, Tran R, Choi J, Llewellyn M et al (2010) Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice. Cell 143:1059–1071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Halpern BC, Chaudhury S, Rodeo SA (2012) The role of platelet-rich plasma in inducing musculoskeletal tissue healing. HSS J 8: 137–145

    Article  PubMed Central  PubMed  Google Scholar 

  63. Smyth NA, Murawski CD, Haleem AM, Hannon CP, Savage-Elliott I et al (2012) Establishing proof of concept: platelet-rich plasma and bone marrow aspirate concentrate may improve cartilage repair following surgical treatment for osteochondral lesions of the talus. World J Orthop 3: 101–108

    Article  PubMed Central  PubMed  Google Scholar 

  64. Maumus M, Peyrafitte JA, D’Angelo R, Fournier-Wirth C, Bouloumie A et al (2011) Native human adipose stromal cells: localization, morphology and phenotype. Int J Obes (Lond) 35:1141–1153

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research support is provided from the Plastic Surgery Educational Foundation, National Institutes of Health. Drs. Alfonso and Hicok are employees and Dr. Cohen is a consultant for Cytori Therapeutics. Dr. Cohen is a founder and board member of Cell Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Mailey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mailey, B. et al. (2014). Adipose-Derived Stem Cells: Methods for Isolation and Applications for Clinical Use. In: Kioussi, C. (eds) Stem Cells and Tissue Repair. Methods in Molecular Biology, vol 1210. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1435-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1435-7_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1434-0

  • Online ISBN: 978-1-4939-1435-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics