Analysis of Volatile Organic Compounds in Exhaled Breath by Gas Chromatography-Mass Spectrometry Combined with Chemometric Analysis

  • Jan W. Dallinga
  • Agnieszka Smolinska
  • Frederik-Jan van Schooten
Part of the Methods in Molecular Biology book series (MIMB, volume 1198)


Analysis of exhaled breath samples reveals the presence of many volatile organic compounds (VOCs). The VOC composition of the breath, the so-called breath profile, contains a variety of information including the health status and condition of the organism that produced the sample. Therefore, breath profiling can be used in diagnosing and monitoring disease and other characteristics of the organism, such as phenotype, diet, and exercise. Among various techniques available for breath analysis, GC-MS provides the most extensive information with regard to the qualitative and quantitative presence of VOCs in breath.

Key words

Volatile organic compounds Gas chromatography Breath sampling Breath analysis Breathomics Correlation-optimized warping Chemometrics 


  1. 1.
    Phillips M, Altorki N, Austin JHM et al (2005) Prediction of lung cancer using volatile biomarkers in breath. J Clin Oncol 23:839SCrossRefGoogle Scholar
  2. 2.
    Verdam FJ, Dallinga JW, Driessen A et al (2013) Non-alcoholic steatohepatitis: a non-invasive diagnosis by analysis of exhaled breath. J Hepatol 58:543–548PubMedCrossRefGoogle Scholar
  3. 3.
    Boots AW, van Berkel JJBN, Dallinga JW et al (2012) The versatile use of exhaled volatile organic compounds in human health and disease. J Breath Res 6:027108PubMedCrossRefGoogle Scholar
  4. 4.
    Van Berkel JJ, Dallinga JW, Moller GM et al (2010) A profile of volatile organic compounds in breath discriminates COPD patients from controls. Respir Med 104:557–563PubMedCrossRefGoogle Scholar
  5. 5.
    Krzanowski WJ (2000) Principles of multivariate analysis (rev. ed). Oxford, New York, NYGoogle Scholar
  6. 6.
    Smolinska A, Hauschild AC, Fijten RRR et al (2014) Current Breathomics - a review on data preprocessing techniques and machine learning in metabolomics breath analysis. J Breath Res 8:027105Google Scholar
  7. 7.
    Peters S, van Velzen E, Janssen HG (2009) Parameter selection for peak alignment in chromatographic sample profiling: objective quality indicators and use of control samples. Anal Bioanal Chem 394:1273–1281PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Lommen A (2009) MetAlign: Interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal Chem 81:3079–3086PubMedCrossRefGoogle Scholar
  9. 9.
    Hoffmann N, Keck M, Neuweger H et al (2012) Combining peak- and chromatogram-based retention time alignment algorithms for multiple chromatography-mass spectrometry datasets. BMC Bioinformatics 13:214PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ho TJ, Kuo CH, Wang SY et al (2013) True ion pick (TIPick): a denoising and peak picking algorithm to extract ion signals from liquid chromatography/mass spectrometry data. J Mass Spectrom 48:234–242PubMedCrossRefGoogle Scholar
  11. 11.
  12. 12.
    Eilers PHC, Marx BD (1996) Flexible smoothing with B-splines and penalties. Stat Sci 11:89–102CrossRefGoogle Scholar
  13. 13.
    Eilers PHC (2003) A perfect smoother. Anal Chem 75:3631–3636PubMedCrossRefGoogle Scholar
  14. 14.
    Eilers PHC, Currie ID, Durban M (2006) Fast and compact smoothing on large multidimensional grids. Comput Stat Data Anal 50:61–76CrossRefGoogle Scholar
  15. 15.
    Nielsen NPV, Carstensen JM, Smedsgaard J (1998) Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping. J Chromatograph A 805:17–35CrossRefGoogle Scholar
  16. 16.
    Dieterle F, Ross A, Schlotterbeck G et al (2006) Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in H-1 NMR metabonomics. Anal Chem 78:4281–4290PubMedCrossRefGoogle Scholar
  17. 17.
    Torgrip RJO, Aberg KM, Alm E et al (2008) A note on normalization of biofluid 1D H-1-NMR data. Metabolomics 4:114–121CrossRefGoogle Scholar
  18. 18.
    Spraul M, Neidig P, Klauck U et al (1994) Automatic reduction of NMR spectroscopic data for statistical and pattern-recognition classification of samples. J Pharm Biomed Anal 12:1215–1225PubMedCrossRefGoogle Scholar
  19. 19.
    van den Berg RA, Hoefsloot HCJ, Westerhuis JA et al (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7:142PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Eriksson L, Johansson E, Kettaneh-Wold N, et al. (2006) Multi- and megavariate data analysis (2nd rev. ed). Umetrics AB, Umeå, SwedenGoogle Scholar
  21. 21.
    Xia JG, Psychogios N, Young N et al (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37:W652–W660PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Madsen R, Lundstedt T, Trygg J (2010) Chemometrics in metabolomics–a review in human disease diagnosis. Anal Chim Acta 659:23–33PubMedCrossRefGoogle Scholar
  23. 23.
    Jackson TE (1991) A user’s guide to principal components. Wiley, Hoboken, NJCrossRefGoogle Scholar
  24. 24.
    Wold S, Sjostrom M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chem Intel Lab Sys 58:109–130CrossRefGoogle Scholar
  25. 25.
    Webb A (2002) Statistical pattern recognition. Wiley, Hoboken, NJCrossRefGoogle Scholar
  26. 26.
    Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  27. 27.
    Snee RD (1977) Validation of regression models: methods and examples. Technom 19:415–428CrossRefGoogle Scholar
  28. 28.
    Kennard RW, Stone LA (1969) Computer aided design of experiments. Technom 11:137–148CrossRefGoogle Scholar
  29. 29.
    Westerhuis JA, Hoefsloot HCJ, Smit S et al (2008) Assessment of PLSDA cross validation. Metabolomics 4:81–89CrossRefGoogle Scholar
  30. 30.
    Anderssen E, Dyrstad K, Westad F et al (2006) Reducing over-optimism in variable selection by cross-model validation. Chemo Intel Lab Sys 84:69–74CrossRefGoogle Scholar
  31. 31.
    Tomasi G, van den Berg F, Andersson C (2004) Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. J Chemom 18: 231–241CrossRefGoogle Scholar
  32. 32.
    Bloemberg TG, Gerretzen J, Wouters HJP et al (2010) Improved parametric time warping for proteomics. Chemo Intel Lab Sys 104: 65–74CrossRefGoogle Scholar
  33. 33.
    Savorani F, Tomasi G, Engelsen SB (2010) Icoshift: a versatile tool for the rapid alignment of 1D NMR spectra. J Magn Reson 202: 190–202PubMedCrossRefGoogle Scholar
  34. 34.
    Dong JY, Cheng KK, Xu JJ et al (2011) Group aggregating normalization method for the preprocessing of NMR-based metabolomic data. Chemo Intel Lab Sys 108:123–132CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jan W. Dallinga
    • 1
  • Agnieszka Smolinska
    • 1
  • Frederik-Jan van Schooten
    • 1
  1. 1.Department of ToxicologyMaastricht UniversityMaastrichtThe Netherlands

Personalised recommendations