Skip to main content

Overview of Genetic Tools and Techniques to Study Notch Signaling in Mice

  • Protocol
  • First Online:
Notch Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1187))

Abstract

Aberrations of Notch signaling in humans cause both congenital and acquired defects and cancers. Genetically engineered mice provide the most efficient and cost-effective models to study Notch signaling in a mammalian system. Here, we review the various types of genetic models, tools, and strategies to study Notch signaling in mice, and provide examples of their use. We also provide advice on breeding strategies for conditional mutant mice, and a protocol for tamoxifen administration to mouse strains expressing inducible Cre recombinase-estrogen receptor fusion proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guruharsha KG, Kankel MW, Artavanis-Tsakonas S (2012) The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet 13:654–666

    Article  CAS  PubMed  Google Scholar 

  2. Ilagan MX, Kopan R (2007) SnapShot: Notch signaling pathway. Cell 128:1246

    Article  PubMed  Google Scholar 

  3. Kopan R (2012) Notch signaling. Cold Spring Harb Perspect Biol 4:a011213

    Article  PubMed  Google Scholar 

  4. Andersson ER, Sandberg R, Lendahl U (2011) Notch signaling: simplicity in design, versatility in function. Development 138:3593–3612

    Article  CAS  PubMed  Google Scholar 

  5. Bradley A, Anastassiadis K, Ayadi A et al (2012) The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm Genome 23:580–586

    Article  PubMed Central  PubMed  Google Scholar 

  6. Bucan M, Eppig JT, Brown S (2012) Mouse genomics programs and resources. Mamm Genome 23:479–489

    Article  PubMed  Google Scholar 

  7. White JK, Gerdin AK, Karp NA et al (2013) Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell 154:452–464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Osterwalder M, Galli A, Rosen B et al (2010) Dual RMCE for efficient re-engineering of mouse mutant alleles. Nat Methods 7:893–895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Schnütgen F, Ehrmann F, Poser I et al (2011) Resources for proteomics in mouse embryonic stem cells. Nat Methods 8:103–104

    Article  PubMed  Google Scholar 

  10. Gridley T (2010) Notch signaling in the vasculature. Curr Top Dev Biol 92:277–309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Sternberg N, Hamilton D (1981) Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J Mol Biol 150:467–486

    Article  CAS  PubMed  Google Scholar 

  12. Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A 85:5166–5170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gu H, Marth JD, Orban PC et al (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265:103–106

    Article  CAS  PubMed  Google Scholar 

  14. Kwan KM (2002) Conditional alleles in mice: practical considerations for tissue-specific knockouts. Genesis 32:49–62

    Article  CAS  PubMed  Google Scholar 

  15. Orban PC, Chui D, Marth JD (1992) Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci U S A 89:6861–6865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Danielian PS, Muccino D, Rowitch DH et al (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol 8:1323–1326

    Article  CAS  PubMed  Google Scholar 

  17. Feil R, Brocard J, Mascrez B et al (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 93:10887–10890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Feil R, Wagner J, Metzger D et al (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237:752–757

    Article  CAS  PubMed  Google Scholar 

  19. Feil S, Valtcheva N, Feil R (2009) Inducible Cre mice. Methods Mol Biol 530:343–363

    Article  CAS  PubMed  Google Scholar 

  20. Hayashi S, McMahon AP (2002) Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol 244:305–318

    Article  CAS  PubMed  Google Scholar 

  21. Kellendonk C, Tronche F, Monaghan AP et al (1996) Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res 24:1404–1411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Rose MF, Ahmad KA, Thaller C et al (2009) Excitatory neurons of the proprioceptive, interoceptive, and arousal hindbrain networks share a developmental requirement for Math1. Proc Natl Acad Sci U S A 106:22462–22467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Dymecki SM, Ray RS, Kim JC (2010) Mapping cell fate and function using recombinase-based intersectional strategies. Methods Enzymol 477:183–213

    Article  CAS  PubMed  Google Scholar 

  24. Meyers EN, Lewandoski M, Martin GR (1998) An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat Genet 18:136–141

    Article  CAS  PubMed  Google Scholar 

  25. D’Souza B, Meloty-Kapella L, Weinmaster G (2010) Canonical and non-canonical Notch ligands. Curr Top Dev Biol 92:73–129

    Article  PubMed  Google Scholar 

  26. Skarnes WC, Rosen B, West AP et al (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474:337–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Tu L, Fang TC, Artis D et al (2005) Notch signaling is an important regulator of type 2 immunity. J Exp Med 202:1037–1042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Weng AP, Nam Y, Wolfe MS et al (2003) Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Mol Cell Biol 23:655–664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Murray SA, Eppig JT, Smedley D et al (2012) Beyond knockouts: cre resources for conditional mutagenesis. Mamm Genome 23:587–599

    Article  PubMed Central  PubMed  Google Scholar 

  30. Heffner CS, Herbert Pratt C, Babiuk RP et al (2012) Supporting conditional mouse mutagenesis with a comprehensive cre characterization resource. Nat Commun 3:1218

    Article  PubMed Central  PubMed  Google Scholar 

  31. Nagy A, Mar L, Watts G (2009) Creation and use of a cre recombinase transgenic database. Methods Mol Biol 530:365–378

    Article  CAS  PubMed  Google Scholar 

  32. Chandras C, Zouberakis M, Salimova E et al (2012) CreZOO—the European virtual repository of Cre and other targeted conditional driver strains. Database 2012:bas029

    Article  PubMed Central  PubMed  Google Scholar 

  33. Bao J, Ma HY, Schuster A et al (2013) Incomplete cre-mediated excision leads to phenotypic differences between Stra8-iCre; Mov10l1(lox/lox) and Stra8-iCre; Mov10l1(lox/Delta) mice. Genesis 51:481–490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Cai T, Seymour ML, Zhang H et al (2013) Conditional deletion of Atoh1 reveals distinct critical periods for survival and function of hair cells in the organ of Corti. J Neurosci 33:10110–10122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Reinert RB, Kantz J, Misfeldt AA et al (2012) Tamoxifen-induced Cre-loxP recombination is prolonged in pancreatic islets of adult mice. PLoS One 7:e33529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Park EJ, Sun X, Nichol P et al (2008) System for tamoxifen-inducible expression of cre-recombinase from the Foxa2 locus in mice. Dev Dyn 237:447–453

    Article  CAS  PubMed  Google Scholar 

  37. Leone DP, Genoud S, Atanasoski S et al (2003) Tamoxifen-inducible glia-specific Cre mice for somatic mutagenesis in oligodendrocytes and Schwann cells. Mol Cell Neurosci 22:430–440

    Article  CAS  PubMed  Google Scholar 

  38. Murtaugh LC, Stanger BZ, Kwan KM et al (2003) Notch signaling controls multiple steps of pancreatic differentiation. Proc Natl Acad Sci U S A 100:14920–14925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Varadkar PA, Kraman M, McCright B (2009) Generation of mice that conditionally express the activation domain of Notch2. Genesis 47:573–578

    Article  CAS  PubMed  Google Scholar 

  40. Oh P, Lobry C, Gao J et al (2013) In vivo mapping of Notch pathway activity in normal and stress hematopoiesis. Cell Stem Cell 13:190–204

    Article  CAS  PubMed  Google Scholar 

  41. Ong CT, Cheng HT, Chang LW et al (2006) Target selectivity of vertebrate notch proteins. Collaboration between discrete domains and CSL-binding site architecture determines activation probability. J Biol Chem 281:5106–5119

    Article  CAS  PubMed  Google Scholar 

  42. Mizutani K, Yoon K, Dang L et al (2007) Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 449:351–355

    Article  CAS  PubMed  Google Scholar 

  43. Souilhol C, Cormier S, Monet M et al (2006) Nas transgenic mouse line allows visualization of Notch pathway activity in vivo. Genesis 44:277–286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. DasGupta R, Fuchs E (1999) Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126:4557–4568

    CAS  PubMed  Google Scholar 

  45. Maretto S, Cordenonsi M, Dupont S et al (2003) Mapping Wnt/beta-catenin signaling during mouse development and in colorectal tumors. Proc Natl Acad Sci U S A 100:3299–3304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Ohtsuka T, Imayoshi I, Shimojo H et al (2006) Visualization of embryonic neural stem cells using Hes promoters in transgenic mice. Mol Cell Neurosci 31:109–122

    Article  CAS  PubMed  Google Scholar 

  47. Basak O, Taylor V (2007) Identification of self-replicating multipotent progenitors in the embryonic nervous system by high Notch activity and Hes5 expression. Eur J Neurosci 25:1006–1022

    Article  PubMed  Google Scholar 

  48. Imayoshi I, Sakamoto M, Yamaguchi M et al (2010) Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J Neurosci 30:3489–3498

    Article  CAS  PubMed  Google Scholar 

  49. Fre S, Hannezo E, Sale S et al (2011) Notch lineages and activity in intestinal stem cells determined by a new set of knock-in mice. PLoS One 6:e25785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Sale S, Lafkas D, Artavanis-Tsakonas S (2013) Notch2 genetic fate mapping reveals two previously unrecognized mammary epithelial lineages. Nat Cell Biol 15:451–460

    Article  CAS  PubMed  Google Scholar 

  51. Nowotschin S, Xenopoulos P, Schrode N et al (2013) A bright single-cell resolution live imaging reporter of Notch signaling in the mouse. BMC Dev Biol 13:15

    Article  PubMed Central  PubMed  Google Scholar 

  52. Vooijs M, Ong CT, Hadland B et al (2007) Mapping the consequence of Notch1 proteolysis in vivo with NIP-CRE. Development 134:535–544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71

    Article  CAS  PubMed  Google Scholar 

  54. Smith E, Claudinot S, Lehal R et al (2012) Generation and characterization of a Notch1 signaling-specific reporter mouse line. Genesis 50:700–710

    Article  CAS  PubMed  Google Scholar 

  55. Govindarajan V, Harrison WR, Xiao N et al (2005) Intracorneal positioning of the lens in Pax6-GAL4/VP16 transgenic mice. Mol Vis 11:876–886

    CAS  PubMed  Google Scholar 

  56. Liu Z, Turkoz A, Jackson EN et al (2011) Notch1 loss of heterozygosity causes vascular tumors and lethal hemorrhage in mice. J Clin Invest 121:800–808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Liu Z, Obenauf AC, Speicher MR et al (2009) Rapid identification of homologous recombinants and determination of gene copy number with reference/query pyrosequencing (RQPS). Genome Res 19:2081–2089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Liu Z, Chen S, Boyle S et al (2013) The extracellular domain of Notch2 increases its cell-surface abundance and ligand responsiveness during kidney development. Dev Cell 25:585–598

    Article  PubMed Central  PubMed  Google Scholar 

  59. Morimoto M, Liu Z, Cheng HT et al (2010) Canonical Notch signaling in the developing lung is required for determination of arterial smooth muscle cells and selection of Clara versus ciliated cell fate. J Cell Sci 123:213–224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Liu Z, Liu Z, Walters BJ et al (2013) In vivo visualization of Notch1 proteolysis reveals the heterogeneity of Notch1 signaling activity in the mouse cochlea. PLoS One 8:e64903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Luche H, Weber O, Nageswara Rao T et al (2007) Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage tracing studies. Eur J Immunol 37:43–53

    Article  CAS  PubMed  Google Scholar 

  62. Saito M, Iwawaki T, Taya C et al (2001) Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat Biotechnol 19:746–750

    Article  CAS  PubMed  Google Scholar 

  63. Kraman M, McCright B (2005) Functional conservation of Notch1 and Notch2 intracellular domains. FASEB J 19:1311–1313

    CAS  PubMed  Google Scholar 

  64. Donahue LR, Hrabe de Angelis M, Hagn M et al (2012) Centralized mouse repositories. Mamm Genome 23:559–571

    Article  PubMed Central  PubMed  Google Scholar 

  65. Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Wang H, Yang H, Shivalila CS et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Gridley or Andrew K. Groves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gridley, T., Groves, A.K. (2014). Overview of Genetic Tools and Techniques to Study Notch Signaling in Mice. In: Bellen, H., Yamamoto, S. (eds) Notch Signaling. Methods in Molecular Biology, vol 1187. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1139-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1139-4_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1138-7

  • Online ISBN: 978-1-4939-1139-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics