Skip to main content

Methods for the Study of Synaptic Receptor Functional Properties

  • Protocol
  • First Online:
Patch-Clamp Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1183))

Abstract

The generation of a synaptic current at the postsynaptic element (PSCs) is the result of a dynamic sequence of events including the release of the neurotransmitter, its diffusion in the synaptic cleft, and the activation of neurotransmitter receptors located at the postsynaptic side. It is widely accepted that the amplitude and the duration of PSCs are largely dictated by the gating properties of postsynaptic receptors. However, the knowledge of the properties of postsynaptic receptors is mostly derived from steady-state analysis, a condition that is substantially different from the non-equilibrium activation of synaptic receptors imposed by submillisecond neurotransmitter exposures. Given the technical limitations to reproduce the brief “synaptic-like” agonist pulse durations, the functioning of postsynaptic receptors during synaptic transmission is not fully elucidated and the “on-demand” postsynaptic activation of synapses cannot be easily achieved. In this chapter, we review the diverse approaches to study receptor gating at times relevant for synaptic transmission and novel optical/optogenetic techniques for controlling synaptic activity at the postsynaptic level. In addition, we emphasize the role of non-equilibrium in unmasking specific features of synaptic receptor gating and the recent advances in photonics for the light-control of neuronal activity at the single-receptor level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Branco T, Hausser M (2010) The single dendritic branch as a fundamental functional unit in the nervous system. Curr Opin Neurobiol 20(4):494–502. doi:10.1016/j.conb.2010.07.009

    Article  CAS  PubMed  Google Scholar 

  2. Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321(5885):53–57. doi:10.1126/science.1149381, 321/5885/53 [pii]

    Article  CAS  PubMed  Google Scholar 

  3. Tang CM, Margulis M, Shi QY, Fielding A (1994) Saturation of postsynaptic glutamate receptors after quantal release of transmitter. Neuron 13(6):1385–1393

    Article  CAS  PubMed  Google Scholar 

  4. Barberis A, Petrini EM, Cherubini E, Mozrzymas JW (2002) Allosteric interaction of zinc with recombinant alpha(1)beta(2)gamma(2) and alpha(1)beta(2) GABA(A) receptors. Neuropharmacology 43(4):607–618, S0028390802001090 [pii]

    Article  CAS  PubMed  Google Scholar 

  5. Bowie D, Lange GD (2002) Functional stoichiometry of glutamate receptor desensitization. J Neurosci 22(9):3392–3403, 20026333

    CAS  PubMed  Google Scholar 

  6. Dravid SM, Prakash A, Traynelis SF (2008) Activation of recombinant NR1/NR2C NMDA receptors. J Physiol 586(Pt 18):4425–4439. doi:10.1113/jphysiol.2008.158634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Pitt SJ, Sivilotti LG, Beato M (2008) High intracellular chloride slows the decay of glycinergic currents. J Neurosci 28(45):11454–11467. doi:10.1523/JNEUROSCI.3890-08.2008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Barberis A, Petrini EM, Mozrzymas JW (2011) Impact of synaptic neurotransmitter concentration time course on the kinetics and pharmacological modulation of inhibitory synaptic currents. Front Cell Neurosci 5:6. doi:10.3389/fncel.2011.00006

    Article  PubMed Central  PubMed  Google Scholar 

  9. Barberis A (2012) Fast perfusion methods for the study of ligand-gated ion channels. In: Fellin THM (ed) Neuronal network analysis, vol 67. Springer, New York, NY, pp 173–187. doi:10.1007/7657_2011_20

    Chapter  Google Scholar 

  10. Jonas P (1995) Fast application of agonist to isolated membrane patches. In: Sakmann B, Neher E (eds) Single channel recordings. Plenum Press, New York, NY

    Google Scholar 

  11. De Angelis F, Das G, Candeloro P et al (2010) Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nat Nanotechnol 5(1):67–72. doi:10.1038/nnano.2009.348

    Article  PubMed  Google Scholar 

  12. Franke C, Hatt H, Dudel J (1987) Liquid filament switch for ultra-fast exchanges of solutions at excised patches of synaptic membrane of crayfish muscle. Neurosci Lett 77(2):199–204

    Article  CAS  PubMed  Google Scholar 

  13. Moffatt L, Hume RI (2007) Responses of rat P2X2 receptors to ultrashort pulses of ATP provide insights into ATP binding and channel gating. J Gen Physiol 130(2):183–201. doi:10.1085/jgp.200709779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Clements JD, Lester RA, Tong G et al (1992) The time course of glutamate in the synaptic cleft. Science 258(5087):1498–1501

    Article  CAS  PubMed  Google Scholar 

  15. Mozrzymas JW, Barberis A, Michalak K, Cherubini E (1999) Chlorpromazine inhibits miniature GABAergic currents by reducing the binding and by increasing the unbinding rate of GABAA receptors. J Neurosci 19(7):2474–2488

    CAS  PubMed  Google Scholar 

  16. He L, Wu XS, Mohan R, Wu LG (2006) Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature 444(7115):102–105. doi:10.1038/nature05250

    Article  CAS  PubMed  Google Scholar 

  17. Popescu G, Robert A, Howe JR, Auerbach A (2004) Reaction mechanism determines NMDA receptor response to repetitive stimulation. Nature 430(7001):790–793. doi:10.1038/nature02775

    Article  CAS  PubMed  Google Scholar 

  18. Barberis A, Petrini EM, Cherubini E (2004) Presynaptic source of quantal size variability at GABAergic synapses in rat hippocampal neurons in culture. Eur J Neurosci 20(7):1803–1810. doi:10.1111/j.1460-9568.2004.03624.x, EJN3624 [pii]

    Article  PubMed  Google Scholar 

  19. Min MY, Rusakov DA, Kullmann DM (1998) Activation of AMPA, kainate, and metabotropic receptors at hippocampal mossy fiber synapses: role of glutamate diffusion. Neuron 21(3):561–570, S0896-6273(00)80566-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  20. Perrais D, Ropert N (2000) Altering the concentration of GABA in the synaptic cleft potentiates miniature IPSCs in rat occipital cortex. Eur J Neurosci 12(1):400–404, ejn957 [pii]

    Article  CAS  PubMed  Google Scholar 

  21. Barberis A, Sachidhanandam S, Mulle C (2008) GluR6/KA2 kainate receptors mediate slow-deactivating currents. J Neurosci 28(25):6402–6406. doi:10.1523/JNEUROSCI.1204-08.2008, 28/25/6402 [pii]

    Article  CAS  PubMed  Google Scholar 

  22. Jones MV, Westbrook GL (1995) Desensitized states prolong GABAA channel responses to brief agonist pulses. Neuron 15(1):181–191, 0896-6273(95)90075-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  23. Petrini EM, Nieus T, Ravasenga T et al (2011) Influence of GABAAR monoliganded states on GABAergic responses. J Neurosci 31(5):1752–1761. doi:10.1523/JNEUROSCI.1453-10.2011

    Article  CAS  PubMed  Google Scholar 

  24. Mozrzymas JW, Barberis A, Mercik K, Zarnowska ED (2003) Binding sites, singly bound states, and conformation coupling shape GABA-evoked currents. J Neurophysiol 89(2):871–883. doi:10.1152/jn.00951.2002

    Article  CAS  PubMed  Google Scholar 

  25. Lester RA, Jahr CE (1992) NMDA channel behavior depends on agonist affinity. J Neurosci 12(2):635–643

    CAS  PubMed  Google Scholar 

  26. Barberis A, Mozrzymas JW, Ortinski PI, Vicini S (2007) Desensitization and binding properties determine distinct alpha1beta2gamma2 and alpha3beta2gamma2 GABA(A) receptor-channel kinetic behavior. Eur J Neurosci 25(9):2726–2740. doi:10.1111/j.1460-9568.2007.05530.x, EJN5530 [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  27. Bragina L, Marchionni I, Omrani A et al (2008) GAT-1 regulates both tonic and phasic GABA(A) receptor-mediated inhibition in the cerebral cortex. J Neurochem 105(5):1781–1793. doi:10.1111/j.1471-4159.2008.05273.x

    Article  CAS  PubMed  Google Scholar 

  28. Macdonald RL, Rogers CJ, Twyman RE (1989) Kinetic properties of the GABAA receptor main conductance state of mouse spinal cord neurones in culture. J Physiol 410:479–499

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Sachidhanandam S, Blanchet C, Jeantet Y et al (2009) Kainate receptors act as conditional amplifiers of spike transmission at hippocampal mossy fiber synapses. J Neurosci 29(15):5000–5008. doi:10.1523/JNEUROSCI.5807-08.2009

    Article  CAS  PubMed  Google Scholar 

  30. Mott DD, Rojas A, Fisher JL, Dingledine RJ, Benveniste M (2010) Subunit-specific desensitization of heteromeric kainate receptors. J Physiol 588(Pt 4):683–700, jphysiol.2009.185207 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Mozrzymas JW, Barberis A, Vicini S (2007) GABAergic currents in RT and VB thalamic nuclei follow kinetic pattern of alpha3- and alpha1-subunit-containing GABAA receptors. Eur J Neurosci 26(3):657–665. doi:10.1111/j.1460-9568.2007.05693.x, EJN5693 [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  32. Seeman P (1980) Brain dopamine receptors. Pharmacol Rev 32(3):229–313

    CAS  PubMed  Google Scholar 

  33. Toone BK, Fenton GW (1977) Epileptic seizures induced by psychotropic drugs. Psychol Med 7(2):265–270

    Article  CAS  PubMed  Google Scholar 

  34. Mozrzymas JW, Zarnowska ED, Pytel M, Mercik K (2003) Modulation of GABA(A) receptors by hydrogen ions reveals synaptic GABA transient and a crucial role of the desensitization process. J Neurosci 23(22):7981–7992, 23/22/7981 [pii]

    CAS  PubMed  Google Scholar 

  35. DiGregorio DA, Rothman JS, Nielsen TA, Silver RA (2007) Desensitization properties of AMPA receptors at the cerebellar mossy fiber granule cell synapse. J Neurosci 27(31):8344–8357. doi:10.1523/JNEUROSCI.2399-07.2007

    Article  CAS  PubMed  Google Scholar 

  36. Matsuzaki M, Ellis-Davies GC, Nemoto T et al (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4(11):1086–1092. doi:10.1038/nn736

    Article  CAS  PubMed  Google Scholar 

  37. Trigo FF, Papageorgiou G, Corrie JE, Ogden D (2009) Laser photolysis of DPNI-GABA, a tool for investigating the properties and distribution of GABA receptors and for silencing neurons in situ. J Neurosci Methods 181(2):159–169. doi:10.1016/j.jneumeth.2009.04.022

    Article  CAS  PubMed  Google Scholar 

  38. Patneau DK, Mayer ML (1990) Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors. J Neurosci 10(7):2385–2399

    CAS  PubMed  Google Scholar 

  39. Glykys J, Mody I (2007) Activation of GABAA receptors: views from outside the synaptic cleft. Neuron 56(5):763–770. doi:10.1016/j.neuron.2007.11.002

    Article  CAS  PubMed  Google Scholar 

  40. Levi S, Triller A (2006) Neurotransmitter dynamics. In: Kittler JT, Moss SJ (eds) The dynamic synapse: molecular methods in ionotropic receptor biology, Frontiers in neuroscience. CRC Press, Boca Raton, FL

    Google Scholar 

  41. Fino E, Araya R, Peterka DS et al (2009) RuBi-glutamate: two-photon and visible-light photoactivation of neurons and dendritic spines. Front Neural Circ 3:2. doi:10.3389/neuro.04.002.2009

    Google Scholar 

  42. Fino E, Yuste R (2011) Dense inhibitory connectivity in neocortex. Neuron 69(6):1188–1203. doi:10.1016/j.neuron.2011.02.025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Hayama T, Noguchi J, Watanabe S et al (2013) GABA promotes the competitive selection of dendritic spines by controlling local Ca2+ signaling. Nat Neurosci 16(10):1409–1416. doi:10.1038/nn.3496

    Article  CAS  PubMed  Google Scholar 

  44. Gorostiza P, Isacoff EY (2008) Optical switches for remote and noninvasive control of cell signaling. Science 322(5900):395–399. doi:10.1126/science.1166022

    Article  CAS  PubMed  Google Scholar 

  45. Szobota S, Gorostiza P, Del Bene F et al (2007) Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54(4):535–545. doi:10.1016/j.neuron.2007.05.010

    Article  CAS  PubMed  Google Scholar 

  46. Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412. doi:10.1146/annurev-neuro-061010-113817

    Article  CAS  PubMed  Google Scholar 

  47. Bartels E, Wassermann NH, Erlanger BF (1971) Photochromic activators of the acetylcholine receptor. Proc Natl Acad Sci U S A 68(8):1820–1823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Banghart M, Borges K, Isacoff E et al (2004) Light-activated ion channels for remote control of neuronal firing. Nat Neurosci 7(12):1381–1386. doi:10.1038/nn1356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Chambers JJ, Banghart MR, Trauner D, Kramer RH (2006) Light-induced depolarization of neurons using a modified Shaker K(+) channel and a molecular photoswitch. J Neurophysiol 96(5):2792–2796. doi:10.1152/jn.00318.2006

    Article  CAS  PubMed  Google Scholar 

  50. Mathur BN, Tanahira C, Tamamaki N, Lovinger DM (2013) Voltage drives diverse endocannabinoid signals to mediate striatal microcircuit-specific plasticity. Nat Neurosci 16(9):1275–1283. doi:10.1038/nn.3478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Tye KM, Deisseroth K (2012) Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13(4):251–266. doi:10.1038/nrn3171

    Article  CAS  PubMed  Google Scholar 

  52. Specht CG, Izeddin I, Rodriguez PC et al (2013) Quantitative nanoscopy of inhibitory synapses: counting gephyrin molecules and receptor binding sites. Neuron 79(2):308–321. doi:10.1016/j.neuron.2013.05.013

    Article  CAS  PubMed  Google Scholar 

  53. MacGillavry HD, Song Y, Raghavachari S, Blanpied TA (2013) Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors. Neuron 78(4):615–622. doi:10.1016/j.neuron.2013.03.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Nair D, Hosy E, Petersen JD et al (2013) Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. J Neurosci 33(32):13204–13224. doi:10.1523/JNEUROSCI.2381-12.2013

    Article  CAS  PubMed  Google Scholar 

  55. Deshpande VV, Bockrath M, Glazman LI, Yacoby A (2010) Electron liquids and solids in one dimension. Nature 464(7286):209–216. doi:10.1038/nature08918

    Article  CAS  PubMed  Google Scholar 

  56. De Angelis F, Patrini M, Das G et al (2008) A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules. Nano Lett 8(8):2321–2327. doi:10.1021/nl801112e

    Article  PubMed  Google Scholar 

  57. Raether H (1988) Surface plasmons. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Telethon grant GGP11043 to A.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Barberis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Petrini, E.M., Barberis, A. (2014). Methods for the Study of Synaptic Receptor Functional Properties. In: Martina, M., Taverna, S. (eds) Patch-Clamp Methods and Protocols. Methods in Molecular Biology, vol 1183. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1096-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1096-0_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1095-3

  • Online ISBN: 978-1-4939-1096-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics