Skip to main content

Assessing Redox State and Reactive Oxygen Species in Circadian Rhythmicity

  • Protocol
  • First Online:
Plant Circadian Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1158))

Abstract

Redox homeostasis is an important parameter of cell function and cell signaling. Spatial and temporal alterations of redox state control metabolism, developmental processes, as well as acute responses to environmental stresses and stress acclimation. Redox homeostasis is also linked to the circadian clock. This chapter introduces methods to assess important redox parameters such as the low molecular weight redox metabolites glutathione and ascorbate, their amount and redox state, and H2O2 as reactive oxygen species. In vivo redox cell imaging is described by use of the reduction–oxidation sensitive green fluorescent protein (roGFP). Finally, on the level of posttranslational redox modifications of proteins, methods are shown to assess hyperoxidation of 2-cysteine peroxiredoxin and glutathionylation of peroxiredoxin IIE. The redox state of 2-cysteine peroxiredoxin has been identified as a transcription-independent marker of circadian rhythmicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    *Molecule in the excited singlet state S1.

References

  1. Beaver LM, Klichko VI, Chow ES, Kotwica-Rolinska J, Williamson M, Orr WC, Radyuk SN, Giebultowicz JM (2012) Circadian regulation of glutathione levels and biosynthesis in Drosophila melanogaster. PLoS One 7:e50454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Hardeland R, Coto-Montes A, Poeggeler B (2002) Circadian rhythms, oxidative stress, and antioxidative defense mechanisms. Chronobiol Int 20:921–962

    Article  Google Scholar 

  3. White BP, Davies MH, Schnell RC (1987) Circadian variations in hepatic glutathione content, gamma-glutamylcysteine synthetase and gamma-glutamyl transferase activities in mice. Toxicol Lett 35:217–223

    Article  CAS  PubMed  Google Scholar 

  4. Lai AG, Doherty CJ, Mueller-Roeber B, Kay SA, Schippers JH, Dijkwel PP (2012) CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses. Proc Natl Acad Sci U S A 109:17129–17134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Muthuramalingam M, Seidel T, Laxa M, Nunes de Miranda SM, Gärtner F, Ströher E, Kandlbinder A, Dietz KJ (2009) Multiple redox and non-redox interactions define 2-Cys peroxiredoxin as a regulatory hub in the chloroplast. Mol Plant 2:1273–1288

    Article  CAS  PubMed  Google Scholar 

  6. Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M, Qin X, Xu Y, Pan M, Valekunja UK, Feeney KA, Maywood ES, Hastings MH, Baliga NS, Merrow M, Millar AJ, Johnson CH, Kyriacou CP, O'Neill JS, Reddy AB (2012) Peroxiredoxins are conserved markers of circadian rhythms. Nature 485:459–464

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Rosenwasser S, Rot I, Meyer AJ, Feldman L, Jiang K, Friedman H (2009) A fluorometer-based method for monitoring oxidation of redox-sensitive GFP (roGFP) during development and extended dark stress. Physiol Plant 138:493–502

    Article  PubMed  Google Scholar 

  8. Jiang K, Schwarzer C, Lally E, Zhang S, Ruzin S, Machen T, Remington SJ, Feldman L (2006) Expression and characterization of a redox-sensing green fluorescent protein (reduction–oxidation-sensitive green fluorescent protein) in Arabidopsis. Plant Physiol 141:397–403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Marty L, Siala W, Schwarzländer M, Fricker MD, Wirtz M, Sweetlove LJ, Meyer Y, Meyer AJ, Reichheld JP, Hell R (2009) The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc Natl Acad Sci U S A 106:9109–9114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Physiol Plant Mol Biol 58:459–481

    Article  Google Scholar 

  11. Asada K et al (1999) The water-water cycle in chloroplast: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  12. Møller IM et al (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  PubMed  Google Scholar 

  13. Takeda T, Yokota A, Shigeoka S (1995) Resistance of photosynthesis to hydrogen peroxide in algae. Plant Cell Physiol 36:1089–1095

    CAS  Google Scholar 

  14. Genfa Z, Dasgupta PK (1992) Hematin as a peroxidase substitute in hydrogen peroxide determinations. Anal Chem 64:517–522

    Article  CAS  PubMed  Google Scholar 

  15. Ngo TT, Lenhof HM (1980) A sensitive and versatile chromogenic assay for peroxidase and peroxidase-couples reactions. Anal Biochem 105:389–397

    Article  CAS  PubMed  Google Scholar 

  16. Warm E, Latjes GG (1982) Quantification of hydrogen peroxide in plant extracts by the chemiluminiscence reaction with luminol. Phytochemistry 21:827–831

    Article  CAS  Google Scholar 

  17. Perez FJ, Rubio S (2006) An improved chemiluminescence method for hydrogen peroxide determination in plant tissues. Plant Growth Reg 48:89–95

    Article  CAS  Google Scholar 

  18. Noctor G, Foyer CH (1998) ASCORBATE AND GLUTATHIONE: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  19. Pignocchi C, Foyer CH (2003) Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Curr Opin Plant Biol 6:379–389

    Article  CAS  PubMed  Google Scholar 

  20. Smirnoff N (2000) Ascorbate biosynthesis and function in photoprotection. Phil Trans R Soc Lond [Biol] 355:1455–1464

    Article  CAS  Google Scholar 

  21. Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3:229–235

    Article  CAS  PubMed  Google Scholar 

  22. Foyer C, Rowell J, Walker D (1983) Measurement of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta 57:239–244

    Article  Google Scholar 

  23. Oelze M-L, Kandlbinder A, Dietz K-J (2008) Redox regulation and overreduction control in the photosynthesizing cell: complexity in redox regulatory networks. Biochim Biophys Acta 11:1261–1272

    Article  Google Scholar 

  24. Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 1:207–212

    Article  Google Scholar 

  25. Foyer C, Lelandais M, Galap C, Kunert KJ (1991) Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol 3:863–872

    Article  Google Scholar 

  26. Arisi AC, Noctor G, Foyer CH, Jouanin L (1997) Modification of thiol contents in poplars (Populus tremula x P. alba) overexpressing enzymes involved in glutathione synthesis. Planta 3:362–372

    Article  Google Scholar 

  27. Noctor G, Foyer CH (1998) Simultaneous measurement of foliar glutathione, γ-glutamylcysteine, and amino acids by high-performance liquid chromatography: comparison with two other assay methods for glutathione. Anal Biochem 1:98–110

    Article  Google Scholar 

  28. Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot JP, Hell R (2007) Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J 52:973–986

    Article  CAS  PubMed  Google Scholar 

  29. Gutscher M, Pauleau AL, Marty L, Brach T, Wabnitz GH, Samstag Y, Meyer AJ, Dick TP (2008) Real-time imaging of the cellular glutathione redox potential. Nat Methods 5:553–559

    Article  CAS  PubMed  Google Scholar 

  30. Schwarzländer M, Fricker MD, Müller CA, Marty L, Brach T, Novak J, Sweetlove LJ, Hell R, Meyer AJ (2008) Confocal imaging of glutathione redox potential in living plant cells. J Microsc 231:299–316

    Article  PubMed  Google Scholar 

  31. Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, Tsien RY, Remington SJ (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279:13044–13053

    Article  CAS  PubMed  Google Scholar 

  32. Klychnikov OI, Li KW, Lill H, de Boer AH (2007) The V-ATPase from etiolated barley (Hordeum vulgare L.) shoots is activated by blue light and interacts with 14-3-3 proteins. J Exp Bot 58:1013–1023

    Article  CAS  PubMed  Google Scholar 

  33. Netting AG (2002) pH, abscicic acid and the integration of metabolism in plants under stressed and non-stressed conditions. II. Modifications in modes of metabolism induced by variation in the tension of the water column and by stress. J Exp Bot 63:151–173

    Article  Google Scholar 

  34. Shen J, Zeng Y, Zhuang X, Sun L, Yao X, Pimpl P, Jiang L (2013) Organelle pH in the Arabidopsis endomembrane system. Mol Plant 6:1419–1437

    Google Scholar 

  35. Dietz KJ (2011) Peroxiredoxins in plants and cyanobacteria. Antioxid Redox Signal 15:1129–1159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. O'Neill JS, van Ooijen G, Dixon LE, Troein C, Corellou F, Bouget FY, Reddy AB, Millar AJ (2011) Circadian rhythms persist without transcription in a eukaryote. Nature 469:554–558

    Article  PubMed Central  PubMed  Google Scholar 

  37. Chae HZ, Oubrahim H, Park JW, Rhee SG, Boon Chock P (2012) Protein glutathionylation in the regulation of peroxiredoxins: a family of thiol-specific peroxidases that function as antioxidants, molecular chaperones, and signal modulators. Antioxid Redox Signal 16:505–523

    Google Scholar 

  38. Mieyal JJ, Boonchock P (2012) Posttranslational modification of cysteine in redox signaling and oxidative stress: focus on S-glutathionylation antioxid. Redox Signal 16:471–475

    Article  CAS  Google Scholar 

  39. Ghezzi P (2005) Regulation of protein function by glutathionylation. Free Rad Res 39(6):573–580

    Article  CAS  Google Scholar 

  40. Park JW, Mieyal JJ, Rhee SG, Boon Chock P (2009) Deglutathionylation of 2-Cys peroxiredoxin is specifically catalyzed by sulfiredoxin. J Biol Chem 284:23364–23374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Melchers J, Dirdjaja N, Ruppert T, Krauth-Siegel RL (2007) Glutathionylation of trypanosomal thiol redox proteins. J Biol Chem 282:8678–8694

    Article  CAS  PubMed  Google Scholar 

  42. Manevich Y, Feinstein SI, Fisher AB (2003) Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with πGST. Proc Natl Acad Sci U S A 101(11):3780–3785

    Article  Google Scholar 

  43. Noguera-Mazon V, Lemoine L, Walker O, Rouhier N, Salvador A, Jacquot J-P, Lancelin J-M, Krimm I (2006) Glutathionylation induces the dissociation of 1-Cys D-peroxiredoxin non-covalent homodimer. J Biol Chem 281:31736–31742

    Article  CAS  PubMed  Google Scholar 

  44. Trauger SA, Webb W, Siuzdak G (2002) Peptide and protein analysis with mass spectrometry. Spectroscopy 16:15–28

    Article  CAS  Google Scholar 

  45. Neubauer G, Mann M (1999) Mapping of phosphorylation sites of gel-isolated proteins by nanoelectrospray tandem mass spectrometry: potentials and limitations. Anal Chem 71:235–242

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Josef Dietz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

König, K., Galliardt, H., Moore, M., Treffon, P., Seidel, T., Dietz, KJ. (2014). Assessing Redox State and Reactive Oxygen Species in Circadian Rhythmicity. In: Staiger, D. (eds) Plant Circadian Networks. Methods in Molecular Biology, vol 1158. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0700-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0700-7_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0699-4

  • Online ISBN: 978-1-4939-0700-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics