Skip to main content

In Vitro Investigation of the Roles of the Proinflammatory Cytokines Tumor Necrosis Factor-α and Interleukin-1 in Murine Osteoclastogenesis

  • Protocol
  • First Online:
The TNF Superfamily

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1155))

Abstract

Whereas the monocyte/macrophage-colony stimulating factor (M-CSF) and the receptor activator of NF-кB ligand (RANKL) are essential and sufficient for osteoclastogenesis, a number of other cytokines including two proinflammatory cytokines, tumor necrosis factor-α (TNF-α), and interleukin-1 (IL-1), can exert profound effects on the osteoclastogenic process. However, the precise mode of action of TNF-α and IL-1 in osteoclastogenesis remains controversial. While some groups demonstrated that these two cytokines can promote murine osteoclastogenesis in vitro in the presence of M-CSF only, we and others showed that TNF-α-/IL-1-mediated osteoclastogenesis requires permissive levels of RANKL. This chapter describes the method that we have used to investigate the effects of TNF-α and IL-1 on osteoclast formation in in vitro osteoclastogenesis assays using primary murine bone marrow macrophages (BMMs). Detailed experimental conditions are provided and critical points are discussed to help the reader use the method to independently evaluate the roles of TNF-α and IL-1 in osteoclastogenesis in vitro. Moreover, this method can be used to further elucidate the signaling mechanisms by which these two cytokines act in concert with RANKL or with each other to modulate osteoclastogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMM:

Bone marrow macrophage

FBS:

Fetal bovine serum

IACUC:

Institutional Animal Care and Use Committee

IL-1:

Interleukin-1

LPS:

Lipopolysaccharide

M-CSF:

Macrophage/monocyte-colony stimulating factor

NFATc1:

Nuclear factor of activated T cells, cytoplasmic 1

OPG:

Osteoprotegerin

OSHA:

Occupational Safety and Health Administration

PBS:

Phosphate-buffered saline

PI:

Principal investigator

RANK:

Receptor activator of nuclear factor-кB

RANKL:

Receptor-activator of nuclear factor-кB ligand

TNF-α:

Tumor necrosis factor-α

TRAF:

TNF receptor-associated factor

References

  1. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  CAS  PubMed  Google Scholar 

  2. Feng X, McDonald JM (2011) Disorders of bone remodeling. Annu Rev Pathol 6:121–145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF et al (2003) Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol 21:759–806

    Article  CAS  PubMed  Google Scholar 

  4. Metcalf D (2008) Hematopoietic cytokines. Blood 111:485–491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. van de Wijngaert FP, Tas MC, van der Meer JW, Burger EH (1987) Growth of osteoclast precursor-like cells from whole mouse bone marrow: inhibitory effect of CSF-1. Bone Miner 3:97–110

    PubMed  Google Scholar 

  6. Udagawa N, Takahashi N, Akatsu T, Tanaka H, Tanaka H, Sasaki T, Nishihara T et al (1990) Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci U S A 87:7260–7264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  CAS  PubMed  Google Scholar 

  8. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER et al (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390:175–179

    Article  CAS  PubMed  Google Scholar 

  9. Liu W, Xu D, Yang H, Xu H, Shi Z, Cao X et al (2004) Functional identification of three receptor activator of NF-kappa B cytoplasmic motifs mediating osteoclast differentiation and function. J Biol Chem 279:54759–54769

    Article  CAS  PubMed  Google Scholar 

  10. Rho J, Altmann CR, Socci ND, Merkov L, Kim N, So H et al (2002) Gene expression profiling of osteoclast differentiation by combined suppression subtractive hybridization (SSH) and cDNA microarray analysis. DNA Cell Biol 21:541–549

    Article  CAS  PubMed  Google Scholar 

  11. Jules J, Shi Z, Liu J, Xu D, Wang S, Feng X (2010) Receptor activator of NF-{kappa}B (RANK) cytoplasmic IVVY535-538 motif plays an essential role in tumor necrosis factor-{alpha} (TNF)-mediated osteoclastogenesis. J Biol Chem 285:37427–37435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  CAS  PubMed  Google Scholar 

  13. Vassalli P (1992) The pathophysiology of tumor necrosis factors. Annu Rev Immunol 10:411–452

    Article  CAS  PubMed  Google Scholar 

  14. Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S et al (1999) Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402:304–309

    Article  CAS  PubMed  Google Scholar 

  15. Feng X (2005) Regulatory roles and molecular signaling of TNF family members in osteoclasts. Gene 350:1–13

    Article  CAS  PubMed  Google Scholar 

  16. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550

    Article  CAS  PubMed  Google Scholar 

  17. Takahashi N, Udagawa N, Kobayashi Y, Suda T (2007) Generation of osteoclasts in vitro, and assay of osteoclast activity. Methods Mol Med 135:285–301

    Article  CAS  PubMed  Google Scholar 

  18. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S et al (2000) Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 191:275–286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Azuma Y, Kaji K, Katogi R, Takeshita S, Kudo A (2000) Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J Biol Chem 275:4858–4864

    Article  CAS  PubMed  Google Scholar 

  20. Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL (2000) TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 106:1481–1488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Li P, Schwarz EM, O’Keefe RJ, Ma L, Boyce BF, Xing L (2004) RANK signaling is not required for TNFalpha-mediated increase in CD11(hi) osteoclast precursors but is essential for mature osteoclast formation in TNFalpha-mediated inflammatory arthritis. J Bone Miner Res 19:207–213

    Article  CAS  PubMed  Google Scholar 

  22. Ma T, Miyanishi K, Suen A, Epstein NJ, Tomita T, Smith RL et al (2004) Human interleukin-1-induced murine osteoclastogenesis is dependent on RANKL, but independent of TNF-alpha. Cytokine 26:138–144

    Article  CAS  PubMed  Google Scholar 

  23. Wei S, Kitaura H, Zhou P, Ross FP, Teitelbaum SL (2005) IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest 115:282–290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Quinn JM, Horwood NJ, Elliott J, Gillespie MT, Martin TJ (2000) Fibroblastic stromal cells express receptor activator of NF-kappa B ligand and support osteoclast differentiation. J Bone Miner Res 15:1459–1466

    Article  CAS  PubMed  Google Scholar 

  25. Kitaura H, Sands MS, Aya K, Zhou P, Hirayama T, Uthgenannt B et al (2004) Marrow stromal cells and osteoclast precursors differentially contribute to TNF-alpha-induced osteoclastogenesis in vivo. J Immunol 173:4838–4846

    Article  CAS  PubMed  Google Scholar 

  26. Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL et al (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A 97:1566–1571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Jules J, Zhang P, Ashley JW, Wei S, Shi Z, Liu J et al (2012) Molecular basis of requirement of receptor activator of nuclear factor kappaB signaling for interleukin 1-mediated osteoclastogenesis. J Biol Chem 287:15728–15738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Liu J, Wang S, Zhang P, Said-Al-Naief N, Michalek SM, Feng X (2009) Molecular mechanism of the bifunctional role of lipopolysaccharide in osteoclastogenesis. J Biol Chem 284:12512–12523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Takeshita S, Kaji K, Kudo A (2000) Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J Bone Miner Res 15:1477–1488

    Article  CAS  PubMed  Google Scholar 

  30. McHugh KP, Hodivala-Dilke K, Zheng MH, Namba N, Lam J, Novack D et al (2000) Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest 105:433–440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Dinarello CA (1984) Interleukin-1. Rev Infect Dis 6:51–95

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health grant AR47830 (to X. F.) NIAMS, National Institutes of Health Graduate Research Supplement to AR47830 (to J. J.), and by a Within Our Reach innovative basic research grant from the Research and Education Foundation of American College of Rheumatology (to X. F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jules, J., Feng, X. (2014). In Vitro Investigation of the Roles of the Proinflammatory Cytokines Tumor Necrosis Factor-α and Interleukin-1 in Murine Osteoclastogenesis. In: Bayry, J. (eds) The TNF Superfamily. Methods in Molecular Biology, vol 1155. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0669-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0669-7_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0668-0

  • Online ISBN: 978-1-4939-0669-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics