Skip to main content

Generation of Osteoclasts In Vitro, and Assay of Osteoclast Activity

  • Protocol
Arthritis Research

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 135))

Abstract

Osteoclasts are bone-resorbing multinucleated cells derived from the monocytemacrophage lineage. The authors have developed a mouse marrow culture system and a coculture system of mouse osteoblasts and hemopoietic cells, in which osteoclasts are formed in response to various osteotropic factors such as 1α,25-dihydroxyvitamin D3, parathyroid hormone, prostaglandin E2, and interleukin -11. Recent studies have revealed that osteoblasts express two cytokines essential for osteoclastogenesis: receptor activator of nuclear factor κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Using RANKL and M-CSF, we can induce osteoclasts from monocytemacrophage lineage cells even in the absence of osteoblasts. This chapter describes the methods for osteoclast formation in vitro in the presence and absence of osteoblasts, and for pit-formation assay using dentine slices and osteoclasts formed in vitro. These culture systems have made it possible to investigate each step of osteoclast development and function separately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chambers, T. J. (2000) Regulation of the differentiation and function of osteoclasts. J. Pathol. 192, 4–13.

    Article  CAS  PubMed  Google Scholar 

  2. Roodman, G. D. (1996) Advances in bone biology: the osteoclast. Endocr. Rev. 17, 308–332.

    CAS  PubMed  Google Scholar 

  3. Teitelbaum, S. L. and Ross, F. P. (2003) Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4, 638–649.

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi, N., Yamana, H., Yoshiki, S., et al. (1988) Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures. Endocrinology 122, 1373–1382.

    Article  CAS  PubMed  Google Scholar 

  5. Suda, T., Takahashi, N., and Martin, T. J. (1992) Modulation of osteoclast differentiation. Endocr. Rev. 13, 66–80.

    CAS  PubMed  Google Scholar 

  6. Takahashi, N., Akatsu, T., Udagawa, N., et al. (1988) Osteoblastic cells are involved in osteoclast formation. Endocrinology 123, 2600–2602.

    Article  CAS  PubMed  Google Scholar 

  7. Yoshida, H., Hayashi, S., Kunisada, T., et al. (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345, 442–444.

    Article  CAS  PubMed  Google Scholar 

  8. Felix, R., Cecchini, M. G., and Fleisch, H. (1990) Macrophage colony stimulating factor restores in vivo bone resorption in the op/op osteopetrotic mouse. Endocrinology 127, 2592–2594.

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi, N., Udagawa, N., Akatsu, T., Tanaka, H., Isogai, Y., and Suda, T. (1991) Deficiency of osteoclasts in osteopetrotic mice is due to a defect in the local microenvironment provided by osteoblastic cells. Endocrinology 128, 1792–1796.

    Article  CAS  PubMed  Google Scholar 

  10. Yasuda, H., Shima, N., Nakagawa, N., et al. (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 95, 3597–3602.

    Article  CAS  PubMed  Google Scholar 

  11. Lacey, D. L., Timms, E., Tan, H. L., et al. (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176.

    Article  CAS  PubMed  Google Scholar 

  12. Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M. T., and Martin, T. J. (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20, 345–357.

    Article  CAS  PubMed  Google Scholar 

  13. Boyle, W. J., Simonet, W. S., and Lacey, D. L. (2003) Osteoclast differentiation and activation. Nature 423, 337–342.

    Article  CAS  PubMed  Google Scholar 

  14. Hsu, H., Lacey, D. L., Dunstan, C. R., et al. (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc. Natl. Acad. Sci. USA 96, 3540–3545.

    Article  CAS  PubMed  Google Scholar 

  15. Akatsu, T., Tamura, T., Takahashi, N et al. (1992) Preparation and characterization of a mouse multinucleated cell population. J. Bone Miner. Res. 7, 1297–1306.

    Article  CAS  PubMed  Google Scholar 

  16. Tamura, T., Takahashi, N., Akatsu, T., et al. (1993) A new resorption assay with mouse osteoclast-like multinucleated cells formed in vitro. J. Bone Miner. Res. 8, 953–960.

    Article  CAS  PubMed  Google Scholar 

  17. Udagawa, N., Takahashi, N., Akatsu, T., et al. (1990) Origin of osteoclasts: Mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc. Natl. Acad. Sci. USA 87, 7260–7264.

    Article  CAS  PubMed  Google Scholar 

  18. Kobayashi, K., Takahashi, N., Jimi, E., et al. (2000) Tumor necrosis factor a stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKLRANK interaction. J. Exp. Med. 191, 275–286.

    Article  CAS  PubMed  Google Scholar 

  19. Fuller, K., Murphy, C., Kirstein, B., Fox, S. W., and Chambers, T. J. (2002) TNFα potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL. Endocrinology 143, 1108–1118.

    Article  CAS  PubMed  Google Scholar 

  20. Udagawa, N., Takahashi, N., Akatsu, T., et al. (1989) The bone marrow-derived stromal cell lines MC3T3-G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells. Endocrinology 125, 1805–1813.

    Article  CAS  PubMed  Google Scholar 

  21. Suda, T., Jimi, E., Nakamura, I., and Takahashi, N. (1997) Role of 1α, 25-dihydroxyvitamin D3 in osteoclast differentiation and function. Methods Enzymol. 282, 223–235.

    Article  CAS  PubMed  Google Scholar 

  22. Jimi, E., Ikebe, T., Takahashi, N., Hirata, N., Suda, T., and Koga, T. (1996) Interleukin-1b activates an NF-κB-like factor in osteoclast-like cells. J. Biol. Chem. 271, 4605–4608.

    Article  CAS  PubMed  Google Scholar 

  23. Nakamura, I., Jimi, E., Duong, L. T., et al. (1998), Tyrosine phosphorylation of p130Cas is involved in actin organization in osteoclasts. J. Biol. Chem. 273, 11,144–11,149.

    Article  CAS  PubMed  Google Scholar 

  24. Suda, T., Nakamura, I., Jimi, E., and Takahashi, N. (1997) Regulation of osteoclast function. J. Bone Miner. Res. 12, 869–879.

    Article  CAS  PubMed  Google Scholar 

  25. Udagawa, N., Takahashi, N., Sasaki, T., et al. (1992) Failure of bone resorption in osteosclerotic (oc/oc) mice is due to a microenvironment. In: Calcium Regulating Hormones and Bone Metabolism, Cohn, D. V., Gennari C, Tashjian, A. H. Jr., eds., Elsevier Science Publishers, pp. 151–156.

    Google Scholar 

  26. Zambonin-Zallone, A., Teti, A., Carano, A., and Marchisio, P. C. (1988) The distribution of podosomes in osteoclasts cultured on bone laminae, effect of retinol. J. Bone Miner. Res. 3, 517–523.

    Article  CAS  PubMed  Google Scholar 

  27. Chellaiah, M. A., Soga, N., Swanson, S., et al. (2000) Rho-A is critical for osteoclast podosome organization, motility, and bone resorption. J. Biol. Chem. 275, 11,993–12,002.

    Article  CAS  PubMed  Google Scholar 

  28. Nakamura, I., Takahashi, N., Sasaki, T., Jimi, E., Kurokawa, T., and Suda, T. (1996) Chemical and physical properties of the extracellular matrix are required for the actin ring formation in osteoclasts. J. Bone Miner. Res. 11, 1873–1879.

    Article  CAS  PubMed  Google Scholar 

  29. Suzuki, H., Nakamura, I., Takahashi, N., et al. (1996) Calcitonin-induced changes in cytoskeleton are mediated by a signal pathway associated with protein kinase A in osteoclasts. Endocrinology 137, 4685–4690.

    Article  CAS  PubMed  Google Scholar 

  30. Murakami, H., Takahashi, N., Sasaki, T., et al. (2995) A possible mechanism of the specific action of bisophosphonates on osteoclasts: Tiludronate preferentially affects polarized osteoclasts having ruffled borders. Bone 17, 137–144.

    Article  Google Scholar 

  31. Simonet, W. S., Lacey, D. L., Dunstan, C. R., et al. (1997) Osteoprotegerin, a novel secreted protein involved in the regulation of bone density. Cell 89, 309–319.

    Article  CAS  PubMed  Google Scholar 

  32. Tsuda, E., Goto, M., Mochizuki, S., et al. (1997) Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem. Biophys. Res. Commun. 234, 137–142.

    Article  CAS  PubMed  Google Scholar 

  33. Wong, B. R., Rho, J., Arron, J., et al. (1997) TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J. Biol. Chem. 272, 25,190–25,194.

    Article  CAS  PubMed  Google Scholar 

  34. Anderson, D. M., Maraskovsky, E., Billingsley, W. L., et al. (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175–179.

    Article  CAS  PubMed  Google Scholar 

  35. The American Society for Bone and Mineral Research President’s Committee on Nomenclature (2000) Proposed standard nomenclature for new tumor necrosis factor family members involved in the regulation of bone resorption. J. Bone Miner. Res. 15, 2293–2296.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Takahashi, N., Udagawa, N., Kobayashi, Y., Suda, T. (2007). Generation of Osteoclasts In Vitro, and Assay of Osteoclast Activity. In: Cope, A.P. (eds) Arthritis Research. Methods in Molecular Medicine, vol 135. Humana Press. https://doi.org/10.1007/978-1-59745-401-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-401-8_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-344-2

  • Online ISBN: 978-1-59745-401-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics