Skip to main content

Target Selection for Structural Genomics of Infectious Diseases

  • Protocol
  • First Online:
Structural Genomics and Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1140))

Abstract

This chapter describes the protocols used to identify, filter, and annotate potential protein targets from an organism associated with infectious diseases. Protocols often combine computational approaches for mining information in public databases or for checking whether the protein has already been targeted for structure determination, with manual strategies that examine the literature for information on the biological role of the protein or the experimental strategies that explore the effects of knocking out the protein. Publicly available computational tools have been cited as much as possible. Where these do not exist, the concepts underlying in-house tools developed for the Center for Structural Genomics of Infectious Diseases have been described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rose PW, Beran B et al (2011) The RCSB protein data bank: redesigned website and web services. Nucleic Acids Res 39:D392–D401

    Article  CAS  PubMed  Google Scholar 

  2. Chen L, Oughtred R, Berman HM, Westbrook J (2004) TargetDB: a target registration database for structural genomics projects. Bioinformatics 20:2860–2862

    Article  CAS  PubMed  Google Scholar 

  3. Caspi R et al (2010) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 40:D742–D753

    Article  Google Scholar 

  4. Juncker AS, Willenbrock H, Von Heijne G, Brunak S, Nielsen H, Krogh A (2003) Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 12:1652–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen LH, Xiong ZH, Sun LL, Yang J, Jin Q (2012) VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res 40:D641–D645

    Article  CAS  PubMed  Google Scholar 

  6. Jones DT (2007) Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 23:538–544

    Article  CAS  PubMed  Google Scholar 

  7. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  8. The UniProt Consortium (2011) Ongoing and future developments at the universal protein resource. Nucleic Acids Res 39:D214–D219

    Article  Google Scholar 

  9. Berven FS, Flikka K, Jensen HB, Eidhammer I (2004) BOMP: a program to predict integral beta-barrel outer membrane proteins encoded within genomes of Gram-negative bacteria. Nucleic Acids Res 32:W394–W399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Freeman TC Jr, Wimley WC (2010) A highly accurate statistical approach for the prediction of transmembrane beta-barrels. Bioinformatics 26:1965–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burke DS, Monath TP (2001) Flaviviruses. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams &Wilkins, Philadelphia, pp 1043–1125

    Google Scholar 

  12. Chambers TJ, Hahn CS, Galler R, Rice CM (1990) Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44:649–688

    Article  CAS  PubMed  Google Scholar 

  13. Khromykh AA, Sedlak PL, Westaway EG (1999) Trans-complementation analysis of the flavivirus Kunjin ns5 gene reveals an essential role for translation of its N-terminal half in RNA replication. J Virol 73:9247–9255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Khromykh AA, Sedlak PL, Westaway EG (2000) Cis- and trans-acting elements in flavivirus RNA replication. J Virol 74:3253–3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Colombage G, Hall R, Pavy M, Lobigs M (1998) DNA-based and alphavirus-vectored immunisation with prM and E proteins elicits long-lived and protective immunity against the flavivirus, Murray Valley encephalitis virus. Virology 250:151–163

    Article  CAS  PubMed  Google Scholar 

  16. Falconar AK (1999) Identification of an epitope on the dengue virus membrane (M) protein defined by cross-protective monoclonal antibodies: design of an improved epitope sequence based on common determinants present in both envelope (E and M) proteins. Arch Virol 144:2313–2330

    Article  CAS  PubMed  Google Scholar 

  17. Pincus S, Mason PW, Konishi E, Fonseca BA, Shope RE, Rice CM, Paoletti E (1992) Recombinant vaccinia virus producing the prM and E proteins of yellow fever virus protects mice from lethal yellow fever encephalitis. Virology 187:290–297

    Article  CAS  PubMed  Google Scholar 

  18. Vazquez S, Guzman MG, Guillen G, Chinea G, Perez AB, Pupo M, Rodriguez R, Reyes O, Garay HE, Delgado I et al (2002) Immune response to synthetic peptides of dengue prM protein. Vaccine 20:1823–1830

    Article  CAS  PubMed  Google Scholar 

  19. Kimura-Kuroda J, Yasui K (1988) Protection of mice against Japanese encephalitis virus by passive administration with monoclonal antibodies. J Immunol 141:3606–3610

    Article  CAS  PubMed  Google Scholar 

  20. Roehrig JT, Staudinger LA, Hunt AR, Mathews JH, Blair CD (2001) Antibody prophylaxis and therapy for flaviviral encephalitis infections. Ann N Y Acad Sci 951:286–297

    Article  CAS  PubMed  Google Scholar 

  21. Schlesinger JJ, Walsh EE, Brandriss MW (1984) Analysis of 17D yellow fever virus envelope protein epitopes using monoclonal antibodies. J Gen Virol 65(Pt 10):1637–1644

    Article  PubMed  Google Scholar 

  22. Roehrig JT, Mathews JH, Trent DW (1983) Identification of epitopes on the E glycoprotein of Saint Louis encephalitis virus using monoclonal antibodies. Virology 128:118–126

    Article  CAS  PubMed  Google Scholar 

  23. Diamond MS, Sitati E, Friend L, Shrestha B, Higgs S, Engle M (2003) Induced IgM protects against lethal West Nile Virus infection. J Exp Med 198:1–11

    Article  Google Scholar 

  24. Mathews JH, Roehrig JT (1984) Elucidation of the topography and determination of the protective epitopes on the E glycoprotein of Saint Louis encephalitis virus by passive transfer with monoclonal antibodies. J Immunol 132:1533–1537

    Article  CAS  PubMed  Google Scholar 

  25. Oliphant T, Engle M, Nybakken G, Doane C, Johnson S, Huang L, Gorlatov S, Mehlhop E, Marri A, Chung KM et al (2005) Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med 11:522–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eis-Hubinger AM, Gerritzen A, Schneweis KE, Pfeiff B, Pullmann H, Mayr A, Czerny CP (1990) Fatal cowpox-like virus infection transmitted by cat. Lancet 336:880

    Article  CAS  PubMed  Google Scholar 

  27. Kroon EG, Mota BE, Abrahao JS, da Fonseca FG, de Souza Trindade G (2011) Zoonotic Brazilian vaccinia virus: from field to therapy. Antiviral Res 92:150–163

    Article  CAS  PubMed  Google Scholar 

  28. Learned LA, Reynolds MG, Wassa DW, Li Y, Olson VA, Karem K, Stempora LL, Braden ZH, Kline R, Likos A et al (2005) Extended interhuman transmission of monkeypox in a hospital community in the Republic of the Congo, 2003. Am J Trop Med Hyg 73:428–434

    Article  PubMed  Google Scholar 

  29. Pelkonen PM, Tarvainen K, Hynninen A, Kallio ER, Henttonen K, Palva A, Vaheri A, Vapalahti O (2003) Cowpox with severe generalized eruption, Finland. Emerg Infect Dis 9:1458–1461

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vogel S, Sardy M, Glos K, Korting HC, Ruzicka T, Wollenberg A (2012) The Munich outbreak of cutaneous cowpox infection: transmission by infected pet rats. Acta Derm Venereol 92:126–131

    Article  PubMed  Google Scholar 

  31. Wolfs TF, Wagenaar JA, Niesters HG, Osterhaus AD (2002) Rat-to-human transmission of cowpox infection. Emerg Infect Dis 8:1495–1496

    Article  PubMed  PubMed Central  Google Scholar 

  32. Reed KD, Melski JW, Graham MB, Regnery RL, Sotir MJ, Wegner MV, Kazmierczak JJ, Stratman EJ, Li Y, Fairley JA et al (2004) The detection of monkeypox in humans in the Western Hemisphere. N Engl J Med 350:342–350

    Article  CAS  PubMed  Google Scholar 

  33. McLysaght A, Baldi PF, Gaut BS (2003) Extensive gene gain associated with adaptive evolution of poxviruses. Proc Natl Acad Sci U S A 100:15655–15660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Esteban DJ, Hutchinson AP (2011) Genes in the terminal regions of orthopoxvirus genomes experience adaptive molecular evolution. BMC Genomics 12:261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moss B (2007) The viruses and their replication. Wolters Kluwer, Philadelphia, PA

    Google Scholar 

  36. Yeats C, Lees J, Carter P, Sillitoe I, Orengo C (2011) The Gene3D Web Services: a platform for identifying, annotating and comparing structural domains in protein sequences. Nucleic Acids Res 39:W546–W550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bray JE, Marsden RL, Rison SC, Savchenko A, Edwards AM, Thornton JM, Orengo CA (2004) A practical and robust sequence search strategy for structural genomics target selection. Bioinformatics 20:2288–2295

    Article  CAS  PubMed  Google Scholar 

  38. Cuff AL et al (2011) Extending CATH: increasing coverage of the protein structure universe and linking structure with function. Nucleic Acids Res 39:D420–D426

    Article  CAS  PubMed  Google Scholar 

  39. Punta M et al (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301

    Article  CAS  PubMed  Google Scholar 

  40. Yeats C, Redfern OC, Orengo C (2010) A fast and automated solution for accurately resolving protein domain architectures. Bioinformatics 26:745–751

    Article  CAS  PubMed  Google Scholar 

  41. Dosztányi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21:3433–3434

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Drs. Corin Yeats and Benoit Dessailly are supported with federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract Nos. HHSN272200700058C and HHSN272201200026C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine A. Orengo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yeats, C., Dessailly, B.H., Glass, E.M., Fremont, D.H., Orengo, C.A. (2014). Target Selection for Structural Genomics of Infectious Diseases. In: Anderson, W.F. (eds) Structural Genomics and Drug Discovery. Methods in Molecular Biology, vol 1140. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-0354-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0354-2_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-0353-5

  • Online ISBN: 978-1-4939-0354-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics