Skip to main content

Data Collection for Crystallographic Structure Determination

  • Protocol
  • First Online:
Structural Genomics and Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1140))

Abstract

Diffraction data measurement is the final experimental step of crystal structure analysis; all subsequent stages are computational. Good-quality data, optimized for a particular application, make the structure solution and refinement easier and enhance the accuracy of the final models. This chapter describes the principles of the rotation method of data collection and discusses various scenarios that are useful for different types of applications, such as anomalous phasing, molecular replacement, ligand identification, etc. Some typical problems encountered in practice are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dauter Z, Wilson KS (2001) Principles of monochromatic data collection. In: Rossmann MG, Arnold E (eds) International tables for crystallography, vol. F, pp. 177–195

    Google Scholar 

  2. Dauter Z (2010) Carrying out an optimal experiment. Acta Crystallogr D66:389–392

    Google Scholar 

  3. Popov AN, Bourenkov GP (2003) Choice of data-collection parameters based on statistic modelling. Acta Crystallogr D59:1145–1153

    CAS  Google Scholar 

  4. Bourenkov GP, Popov AN (2006) A quantitative approach to data-collection strategies. Acta Crystallogr D62:58–64

    CAS  Google Scholar 

  5. Bourenkov GP, Popov AN (2010) Optimization of data collection taking radiation damage into account. Acta Crystallogr D66:409–419

    Google Scholar 

  6. Leal RM, Bourenkov GP, Svensson O, Spruce D, Guijarro M, Popov AN (2011) Experimental procedure for the characterization of radiation damage in macromolecular crystals. J Synchrotron Radiat 18:381–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arndt UW, Wonacott AJ (1977) The rotation method in crystallography. North Holland, Amsterdam

    Google Scholar 

  8. Pflugrath JW (1999) The finer things in X-ray diffraction data collection. Acta Crystallogr D55:1718–1725

    CAS  Google Scholar 

  9. Yeates TO (1997) Detecting and overcoming crystal twinning. Methods Enzymol 276:344–358

    Article  CAS  PubMed  Google Scholar 

  10. Henderson R (1990) Cryo-protection of protein crystals against radiation damage in electron and X-ray diffraction. Proc Roy Soc London B241:608

    Google Scholar 

  11. Owen LO, Rudino-Pinera E, Garman EF (2006) Experimental determination of the radiation dose limit for cryocooled protein crystals. Proc Natl Acad Sci U S A 103:4912–4917

    Google Scholar 

  12. Garman EF (2010) Radiation damage in macromolecular crystallography: what is it and why should we care? Acta Crystallogr D66:339–351

    Google Scholar 

  13. Winter G (2010) xia2: an expert system for macromolecular crystallography data reduction. J Appl Cryst 43:186–190

    Article  CAS  Google Scholar 

  14. Incardona M-F, Bourenkov GP, Levik K, Pieritz RA, Popov AN, Svensson O (2009) EDNA: a framework for plugin-based applications applied to X-ray experiment online data analysis. J Synchrotron Radiat 16:872–879

    Article  PubMed  Google Scholar 

  15. Mueller Dieckmann C, Panjikar S, Tucker PA, Weiss MS (2005) On the routine use of soft X-rays in macromolecular crystallography. Part III. The optimal data collection wavelength. Acta Crystallogr D61:1263–1272

    CAS  Google Scholar 

  16. Evans G, Pettifer R (2001) CHOOCH: a program for deriving anomalous-scattering factors from X-ray fluorescence spectra. J Appl Crystallogr 34:82–86

    Article  CAS  Google Scholar 

  17. Sun PD, Radaev S, Kattah M (2002) Generating isomorphous heavy-atom derivatives by a quick-soak method. Part I: test cases. Acta Crystallogr D58:1092–1098

    CAS  Google Scholar 

  18. Dauter Z, Dauter M, Rajashankar KR (2000) Novel approach to phasing proteins: derivatization by short cryo-soaking with halides. Acta Crystallogr D56:232–237

    CAS  Google Scholar 

  19. Dauter Z (2005) Use of polynuclear metal clusters in protein crystallography. Compt Rend Chim 8:1808–1814

    Article  CAS  Google Scholar 

  20. Diederichs K, Karplus PA (1997) Improved R-factor for diffraction data analysis in macromolecular crystallography. Nat Struct Biol 4:269–275

    Article  CAS  PubMed  Google Scholar 

  21. Weiss MS, Hilgenfeld R (1997) On the use of merging R factor as a quality indicator for X-ray data. J Appl Crystallogr 30:203–205

    Article  CAS  Google Scholar 

  22. Karplus PA, Diederichs K (2012) Linking crystallographic model and data quality. Science 336:1030–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schneider TR, Sheldrick GM (2002) Substructure solution with SHELXD. Acta Crystallogr D58:1772–1779

    CAS  Google Scholar 

  24. Dauter Z (1999) Data collection strategies. Acta Crystallogr D55:1703–1717

    CAS  Google Scholar 

Download references

Acknowledgements

K.R.R. is supported by a grant from National Institute of General Medical Sciences (8 P41 GM103403-10) of the National Institutes of Health. Z.D. has been supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Dauter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rajashankar, K., Dauter, Z. (2014). Data Collection for Crystallographic Structure Determination. In: Anderson, W.F. (eds) Structural Genomics and Drug Discovery. Methods in Molecular Biology, vol 1140. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-0354-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0354-2_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-0353-5

  • Online ISBN: 978-1-4939-0354-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics