Skip to main content

Characterizing Functional Contributions of Specific GluN2 Subunits to Individual Postsynaptic NMDAR Responses Using Biophysical Parameters

  • Protocol
  • First Online:
NMDA Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2799))

  • 110 Accesses

Abstract

The NMDAR is a heterotetramer composed of two GluN1 subunits and two GluN2 and/or GluN3 subunits, with the GluN2 subunits exhibiting significant diversity in their structure and function. Recent studies have highlighted the importance of characterizing the specific roles of each GluN2 subunit across central nervous system regions and developmental stages, as well as their unique contributions to NMDAR-mediated signaling and plasticity. Understanding the distinct functions of GluN2 subunits is critical for the development of targeted therapeutic strategies for NMDAR-related disorders. However, measuring the functional contribution of individual GluN2 subtypes in ex vivo slices is challenging. Conventionally, pharmacological or genetic approaches are used, but, in many cases, this is not possible or is restricted to population-level NMDAR responses. Here, we describe a technique for using biophysical properties of miniature synaptic NMDAR responses as a proxy to measure the functional contribution of specific GluN2-NMDAR subunits to individual synapses within a neuron.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14:383–400

    Article  CAS  PubMed  Google Scholar 

  2. Wyllie DJA, Livesey MR, Hardingham GE (2013) Influence of GluN2 subunit identity on NMDA receptor function. Neuropharmacology 74:4–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lin B, Brücher FA, Colgin LL, Lynch G (2002) Long-term potentiation alters the modulator pharmacology of AMPA-type glutamate receptors. J Neurophysiol 87:2790–2800. https://doi.org/10.1152/jn.2002.87.6.2790

    Article  CAS  PubMed  Google Scholar 

  4. Liu SJ, Cull-Candy SG (2002) Activity-dependent change in AMPA receptor properties in cerebellar stellate cells. J Neurosci 22:3881–3889. https://doi.org/10.1523/jneurosci.22-10-03881.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bourinet E, Altier C, Hildebrand ME et al (2014) Calcium-permeable ion channels in pain signaling. Physiol Rev 94:81–140. https://doi.org/10.1152/physrev.00023.2013

    Article  CAS  PubMed  Google Scholar 

  6. Monyer H, Burnashev N, Laurie DJ et al (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529–540. https://doi.org/10.1016/0896-6273(94)90210-0

    Article  CAS  PubMed  Google Scholar 

  7. Hansen KB, Ogden KK, Yuan H, Traynelis SF (2014) Distinct functional and pharmacological properties of triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Neuron 81:1084–1096. https://doi.org/10.1016/j.neuron.2014.01.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun W, Hansen KB, Jahr CE (2017) Allosteric interactions between NMDA receptor subunits shape the developmental shift in channel properties. Neuron 94:58–64.e3. https://doi.org/10.1016/j.neuron.2017.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bhattacharya S, Khatri A, Swanger SA et al (2018) Triheteromeric GluN1/GluN2A/GluN2C NMDARs with unique single-channel properties are the dominant receptor population in cerebellar granule cells. Neuron 99:315–328.e5. https://doi.org/10.1016/j.neuron.2018.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gibb AJ, Ogden KK, McDaniel MJ et al (2018) A structurally derived model of subunit-dependent NMDA receptor function. J Physiol 596:4057–4089. https://doi.org/10.1113/JP276093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yi F, Bhattacharya S, Thompson CM et al (2019) Functional and pharmacological properties of triheteromeric GluN1/2B/2D NMDA receptors. J Physiol 597:5495–5514. https://doi.org/10.1113/JP278168

    Article  CAS  PubMed  Google Scholar 

  12. Kumar SS, Huguenard JR (2003) Pathway-specific differences in subunit composition of synaptic NMDA receptors on pyramidal neurons in neocortex. J Neurosci 23:10074–10083. https://doi.org/10.1523/JNEUROSCI.23-31-10074.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brickley SG, Misra C, Mok MHS et al (2003) NR2B and NR2D subunits coassemble in cerebellar Golgi cells to form a distinct NMDA receptor subtype restricted to extrasynaptic sites. J Neurosci 23:4958–4966. https://doi.org/10.1523/jneurosci.23-12-04958.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cull-Candy SG, Leszkiewicz DN (2004) Role of distinct NMDA receptor subtypes at central synapses. Sci STKE 2004:re16

    Article  PubMed  Google Scholar 

  15. Hsia AY, Malenka RC, Nicoll RA (1998) Development of excitatory circuitry in the hippocampus. J Neurophysiol 79:2013–2024. https://doi.org/10.1152/jn.1998.79.4.2013

    Article  CAS  PubMed  Google Scholar 

  16. Gray JA, Shi Y, Usui H et al (2011) Distinct modes of AMPA receptor suppression at developing synapses by GluN2A and GluN2B: single-cell NMDA receptor subunit deletion in vivo. Neuron 71:1085–1101. https://doi.org/10.1016/j.neuron.2011.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hildebrand ME, Pitcher GM, Harding EK et al (2014) GluN2B and GluN2D NMDARs dominate synaptic responses in the adult spinal cord. Sci Rep 4:4094. https://doi.org/10.1038/srep04094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wenzel A, Fritschy JM, Mohler H, Benke D (1997) NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins. J Neurochem 68:469–478. https://doi.org/10.1046/J.1471-4159.1997.68020469.X

    Article  CAS  PubMed  Google Scholar 

  19. Hardingham GE (2019) NMDA receptor C-terminal signaling in development, plasticity, and disease. F1000Res 8:F1000 Faculty Rev-1547. https://doi.org/10.12688/F1000RESEARCH.19925.1

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cousins SL, Stephenson FA (2012) Identification of N-methyl-d-aspartic acid (NMDA) receptor subtype-specific binding sites that mediate direct interactions with scaffold protein PSD-95. J Biol Chem 287:13465. https://doi.org/10.1074/JBC.M111.292862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pitcher GM, Garzia L, Morrissy AS et al (2023) Synapse-specific diversity of distinct postsynaptic GluN2 subtypes defines transmission strength in spinal lamina I. bioRxiv. https://doi.org/10.1101/2023.03.02.530864

  22. Dedek A, Topcu E, Dedek C et al (2022) The heterogeneity of synaptic NMDA receptor responses within individual lamina I pain processing neurons is conserved across sex and species. In: FENS Forum 2022 Conference Abstracts

    Google Scholar 

  23. Bardoni R, Magherini PC, MacDermott AB (1998) NMDA EPSCs at glutamatergic synapses in the spinal cord dorsal horn of the postnatal rat. J Neurosci 18:6558–6567. https://doi.org/10.1523/jneurosci.18-16-06558.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dedek A, Xu J, Kandegedara CM et al (2019) Loss of STEP61 couples disinhibition to N-methyl-d-aspartate receptor potentiation in rodent and human spinal pain processing. Brain 142:1535–1546. https://doi.org/10.1093/brain/awz105

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dedek A, Xu J, Lorenzo L-É et al (2022) Sexual dimorphism in a neuronal mechanism of spinal hyperexcitability across rodent and human models of pathological pain. Brain 145:1124–1138. https://doi.org/10.1093/BRAIN/AWAB408

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hamill OP, Marty A, Neher E et al (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100. https://doi.org/10.1007/BF00656997

    Article  CAS  PubMed  Google Scholar 

  27. Shafer TJ (2003) Whole-cell patch-clamp electrophysiology of voltage-sensitive channels. Curr Protoc Toxicol 17:11.12.1–11.12.14. https://doi.org/10.1002/0471140856.TX1112S17

    Article  Google Scholar 

  28. Groc L, Gustafsson B, Hanse E (2002) Spontaneous unitary synaptic activity in CA1 pyramidal neurons during early postnatal development: constant contribution of AMPA and NMDA receptors. J Neurosci 22:5552–5562. https://doi.org/10.1523/JNEUROSCI.22-13-05552.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee JHA, Miao Z, Chen QY et al (2021) Multiple synaptic connections into a single cortical pyramidal cell or interneuron in the anterior cingulate cortex of adult mice. Mol Brain 14:1–16. https://doi.org/10.1186/S13041-021-00793-8/FIGURES/7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hettigoda NS, Fong AY, Badoer E et al (2015) Identification of CNS neurons with polysynaptic connections to both the sympathetic and parasympathetic innervation of the submandibular gland. Brain Struct Funct 220:2103–2120. https://doi.org/10.1007/S00429-014-0781-1/FIGURES/9

    Article  CAS  PubMed  Google Scholar 

  31. Dedek A, Hildebrand ME (2022) Advances and barriers in understanding presynaptic N-methyl-D-aspartate receptors in spinal pain processing. Front Mol Neurosci 15:127. https://doi.org/10.3389/FNMOL.2022.864502/BIBTEX

    Article  Google Scholar 

  32. Kullmann DM, Asztely F (1998) Extrasynaptic glutamate spillover in the hippocampus: evidence and implications. Trends Neurosci 21:8–14. https://doi.org/10.1016/S0166-2236(97)01150-8

    Article  CAS  PubMed  Google Scholar 

  33. Harney SC, Jane DE, Anwyl R (2008) Extrasynaptic NR2D-containing NMDARs are recruited to the synapse during LTP of NMDAR-EPSCs. J Neurosci 28:11685–11694. https://doi.org/10.1523/JNEUROSCI.3035-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mahmoud H, Martin N, Hildebrand ME (2020) Conserved contributions of NMDA receptor subtypes to synaptic responses in lamina II spinal neurons across early postnatal development. Mol Brain 13:31. https://doi.org/10.1186/s13041-020-00566-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tovar KR, McGinley MJ, Westbrook GL (2013) Triheteromeric NMDA receptors at hippocampal synapses. J Neurosci 33:9150–9160. https://doi.org/10.1523/JNEUROSCI.0829-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rauner C, Köhr G (2011) Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-D-aspartate receptor population in adult hippocampal synapses. J Biol Chem 286:7558–7566. https://doi.org/10.1074/JBC.M110.182600

    Article  CAS  PubMed  Google Scholar 

  37. Cheriyan J, Balsara RD, Hansen KB, Castellino FJ (2016) Pharmacology of triheteromeric N-methyl-D-aspartate receptors. Neurosci Lett 617:240–246. https://doi.org/10.1016/J.NEULET.2016.02.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gibb AJ (2022) Allosteric antagonist action at triheteromeric NMDA receptors. Neuropharmacology 202:108861. https://doi.org/10.1016/J.NEUROPHARM.2021.108861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lester RAJ, Clements JD, Westbrook GL, Jahr CE (1990) Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346:565–567

    Article  CAS  PubMed  Google Scholar 

  40. Sah P, Hestrin S, Nicoll RA (1990) Properties of excitatory postsynaptic currents recorded in vitro from rat hippocampal interneurones. J Physiol 430:605–616. https://doi.org/10.1113/jphysiol.1990.sp018310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rall W, Segev I (1985) Space-clamp problems when voltage clamping branched neurons with intracellular microelectrodes. In: Voltage and patch clamping with microelectrodes. Springer, New York, pp 191–215. https://doi.org/10.1007/978-1-4614-7601-6_9

    Chapter  Google Scholar 

  42. Micropipette techniques for electrophysiology. https://www.sutter.com/MICROPIPETTE/cookbook.html. Accessed 7 May 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Hildebrand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dedek, A., Hildebrand, M.E. (2024). Characterizing Functional Contributions of Specific GluN2 Subunits to Individual Postsynaptic NMDAR Responses Using Biophysical Parameters. In: Burnashev, N., Szepetowski, P. (eds) NMDA Receptors. Methods in Molecular Biology, vol 2799. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3830-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3830-9_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3829-3

  • Online ISBN: 978-1-0716-3830-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics