Skip to main content

Space-Clamp Problems When Voltage Clamping Branched Neurons With Intracellular Microelectrodes

  • Chapter
Voltage and Patch Clamping with Microelectrodes

Abstract

The dendritic surface area of a neuron may be 10, 20, or even 100 times greater than the surface area of the neuron soma. This dendritic membrane provides a large distributed capacity that is electrically coupled to the soma by various cable distances along the branched core conductor. When a voltage clamp is applied across the soma membrane, the dendritic membrane is neither space clamped nor voltage clamped, except for the special case of very short dendritic trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araki, T., and C. A. Terzuolo. Membrane currents in spinal motoneurones associated with the action potential and synaptic activity. J. Neurophysiol. 25: 772–789, 1962.

    PubMed  CAS  Google Scholar 

  2. Barrett, J. N., and W. E. Crill. Specific membrane properties of cat motoneurones. J. Physiol. London 239: 301–324, 1974.

    PubMed  CAS  Google Scholar 

  3. Barrett, J. N., and W. E. Crill. Influences of dendritic location and membrane properties on the effectiveness of synapses on cat motoneurones. J. Physiol. London 239: 325345, 1974.

    Google Scholar 

  4. Barrett, J. N., and W. E. Crill. Voltage clamp of cat motoneurone somata: properties of the fast inward current. J. Physiol. London 304: 231–249, 1980.

    PubMed  CAS  Google Scholar 

  5. Brown, T. H., and D. Johnston. Voltage-clamp analysis of mossy fiber synaptic input to hippocampal neurons. J. Neurophysiol. 50: 487–507, 1983.

    PubMed  CAS  Google Scholar 

  6. Butz, E. G., and J. D. Cowan. Transient potentials in dendritic systems of arbitrary geometry. Biophys. J. 14: 661–689, 1974.

    Article  PubMed  CAS  Google Scholar 

  7. Calvin, W. H. Dendritic synapses and reversal potentials: theoretical implications of the view from the soma. Exp. Neural. 24: 248–264, 1969.

    Article  CAS  Google Scholar 

  8. Carnevale, N. T., and D. Johnston. Electrophysiological characterization of remote chemical synapses. J. Neurophysiol. 47: 606–621, 1982.

    PubMed  CAS  Google Scholar 

  9. Carslaw, H. S., and J. C. Jaeger. Conduction of Heat in Solids. London: Oxford Univ. Press, 1959.

    Google Scholar 

  10. Finkel, A. S., and S. J. Redman. The synaptic current evoked in cat spinal motoneurones by impulses in single group Ia axons. J. Physiol. London 342: 615–632, 1983.

    PubMed  CAS  Google Scholar 

  11. Frank, K., M. G. F. Fuortes, and P. G. Nelson. Voltage clamp of motoneuron soma. Science 130: 38–39, 1959.

    Article  PubMed  CAS  Google Scholar 

  12. Horwitz, B. An analytical method for investigating transient potentials in neurons with branching dendritic trees. Biophys. J. 36: 155–192, 1981.

    Article  PubMed  CAS  Google Scholar 

  13. Horwitz, B. Unequal diameters and their effects on time varying voltages in branched neurons. Biophys. J. 41: 51–66, 1983.

    Article  PubMed  CAS  Google Scholar 

  14. Jack, J. J. B., D. Noble, and R. W. Tsien. Electric Current Flow in Excitable Cells. London: Oxford Univ. Press, 1975.

    Google Scholar 

  15. Jack, J. J. B., and S. J. Redman. An electrical description of the motoneurone and its application to the analysis of synaptic potentials. J. Physiol. London 215: 321–352, 1971.

    CAS  Google Scholar 

  16. Johnston, D., and T. H. Brown. Interpretation of voltage-clamp measurements in hippocampal neurons. J. Neurophysiol. 50: 464–486, 1983.

    PubMed  CAS  Google Scholar 

  17. Joyner, R. W., J. W. Moore, and F. Ramon. Axon voltage-clamp simulations. III. Postsynaptic region. Biophys. J. 15: 37–54, 1975.

    Google Scholar 

  18. Perkel, D. H., and B. Mulloney. Electrotonic properties of neurons: steady state compartmental model. J. Neurophysiol. 41: 621–639, 1978.

    PubMed  CAS  Google Scholar 

  19. Rall, W. Branching dendritic trees and motoneuron membrane resistivity. Exp. Neurol. 1: 491–527, 1959.

    Article  PubMed  CAS  Google Scholar 

  20. Rall, W. Membrane potential transients and membrane time constant of motoneurons. Exp. Neurol. 2: 503–532, 1960.

    Article  PubMed  CAS  Google Scholar 

  21. Rall, W. Theory of physiological properties of dendrites. Ann. NYAcad. Sci. 96: 1071 1092, 1962.

    Google Scholar 

  22. Rall, W. Theoretical significance of dendritic trees for neuronal input-output relations. In: Neural Theory and Modeling, edited by R. Reiss. Stanford, CA: Stanford Univ. Press, 1964, p. 73–97.

    Google Scholar 

  23. Rall, W. Distinguishing theoretical synaptic potentials computed for different somadendritic distributions of synaptic input. J. Neurophysiol. 30: 1138–1168, 1967.

    PubMed  CAS  Google Scholar 

  24. Rall, W. Time constants and electrotonic length of membrane cylinders and neurons. Biophys. J. 9: 1483–1508, 1969.

    Article  PubMed  CAS  Google Scholar 

  25. Rall, W. Core conductor theory and cable properties of neurons. In: Handbook of Physiology. The Nervous System. Cellular Biology of Neurons, edited by J. M. Brookhart and V. B. Mountcastle. Bethesda, MD: Am. Physiol. Soc., 1977, vol. 1, pt. 1, chapt. 3, p. 39–97.

    Google Scholar 

  26. Rall, W., R. E. Burke, T. G. Smith, P. G. Nelson, and K. Frank. Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. J. Neurophysiol. 30: 1169–1193, 1967.

    PubMed  CAS  Google Scholar 

  27. Rall, W., and J. Rinzel. Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys. J. 13: 648–688, 1973.

    Article  PubMed  CAS  Google Scholar 

  28. Redman, S. J. The attenuation of passively propagating dendritic potentials in a motoneurone cable model. J. Physiol. London 234: 637–664, 1973.

    PubMed  CAS  Google Scholar 

  29. Rinzel, J., and W. Rall. Transient response in a dendritic neuron model for current injected at one branch. Biophys. J. 14: 759–790, 1974.

    Article  PubMed  CAS  Google Scholar 

  30. Selverston, A. I., D. F. Russell, J. P. Miller, and D. G. King. The stomatogastric nervous system: structure and function of a small neural network. Prog. Neurobiol. 7: 215–290, 1976.

    Article  PubMed  CAS  Google Scholar 

  31. Turner, D. A., and P. A. Schwartzkroin. Steady-state electrotonic analysis of intracellularly stained hippocampal neurons. J. Neurophysiol. 44: 184–199, 1980.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 American Physiological Society

About this chapter

Cite this chapter

Rall, W., Segev, I. (1985). Space-Clamp Problems When Voltage Clamping Branched Neurons With Intracellular Microelectrodes. In: Smith, T.G., Lecar, H., Redman, S.J., Gage, P.W. (eds) Voltage and Patch Clamping with Microelectrodes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7601-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7601-6_9

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7601-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics