Skip to main content

Purification of Rubisco from Leaves

  • Protocol
  • First Online:
Photosynthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2790))

  • 292 Accesses

Abstract

Rubisco fixes CO2 through the carboxylation of ribulose 1,5-bisphosphate (RuBP) during photosynthesis, enabling the synthesis of organic compounds. The natural diversity of Rubisco properties represents an opportunity to improve its performance and there is considerable research effort focusing on better understanding the properties and regulation of the enzyme. This chapter describes a method for large-scale purification of Rubisco from leaves. After the extraction of Rubisco from plant leaves, the enzyme is separated from other proteins by fractional precipitation with polyethylene glycol followed by ion-exchange chromatography. This method enables the isolation of Rubisco in large quantities for a wide range of biochemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tcherkez G (2013) Modelling the reaction mechanism of ribulose-1,5-bisphosphate carboxylase/oxygenase and consequences for kinetic parameters. Plant Cell Environ 36:1586–1596

    Article  CAS  PubMed  Google Scholar 

  2. Tcherkez GG, Farquhar GD, Andrews TJ (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc Natl Acad Sci USA 103:7246–7251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Raines CA (2003) The Calvin cycle revisited. Photosynth Res 75:1–10

    Article  CAS  PubMed  Google Scholar 

  4. Andersson I (2008) Catalysis and regulation in Rubisco. J Exp Bot 59:1555–1568

    Article  CAS  PubMed  Google Scholar 

  5. Carmo-Silva E, Scales JC, Madgwick PJ, Parry MAJ (2015) Optimizing Rubisco and its regulation for greater resource use efficiency. Plant Cell Environ 38:1817–1832

    Article  CAS  PubMed  Google Scholar 

  6. Galmés J, Kapralov MV, Andralojc PJ et al (2014) Expanding knowledge of the Rubisco kinetics variability in plant species: environmental and evolutionary trends. Plant Cell Environ 37:1989–2001

    Article  PubMed  Google Scholar 

  7. Orr DJ, Alcântara A, Kapralov MV et al (2016) Surveying rubisco diversity and temperature response to improve crop photosynthetic efficiency. Plant Physiol 172:707–717

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sharwood RE, Ghannoum O, Kapralov MV et al (2016) Temperature responses of Rubisco from Paniceae grasses provide opportunities for improving C3 photosynthesis. Nat Plants 2:16186

    Article  CAS  PubMed  Google Scholar 

  9. Carmo-Silva E, Andralojc PJ, Scales JC et al (2017) Phenotyping of field-grown wheat in the UK highlights contribution of light response of photosynthesis and flag leaf longevity to grain yield. J Exp Bot 68:3473–3486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Parry MAJ, Andralojc PJ, Scales JC et al (2013) Rubisco activity and regulation as targets for crop improvement. J Exp Bot 64:717–730

    Article  CAS  PubMed  Google Scholar 

  11. Prins A, Orr DJ, Andralojc PJ et al (2016) Rubisco catalytic properties of wild and domesticated relatives provide scope for improving wheat photosynthesis. J Exp Bot 67:1827–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Perdomo JA, Sales CRG, Carmo-Silva E (2018) Quantification of photosynthetic enzymes in leaf extracts by immunoblotting. Methods Mol Biol 1770:215–227

    Article  CAS  PubMed  Google Scholar 

  13. Carmo-Silva E, Salvucci ME (2013) The regulatory properties of rubisco activase differ among species and affect photosynthetic induction during light transitions. Plant Physiol 161:1645–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barta C, Carmo-Silva E, Salvucci ME (2011) Purification of rubisco activase from leaves or after expression in Escherichia coli. Methods Mol Biol 684:363–374

    Article  CAS  PubMed  Google Scholar 

  15. Carmo-Silva E, Barta C, Salvucci ME (2011) Isolation of ribulose-1,5-bisphosphate carboxylase/oxygenase from leaves. Methods Mol Biol 684:339–347

    Article  CAS  PubMed  Google Scholar 

  16. Goudet MMM, Orr DJ, Melkonian M et al (2020) Rubisco and carbon concentration mechanism (CCM) co-evolution across Chlorophytes and Streptophytes. New Phytol 227:810–823

    Article  CAS  PubMed  Google Scholar 

  17. Wishnick M, Lane MD (1971) Ribulose diphosphate carboxylase from spinach leaves. Methods Enzymol 23:570–577

    Article  Google Scholar 

  18. McCurry SD, Gee R, Tolbert NE (1982) Ribulose-1,5-bisphosphate carboxylase/oxygenase from spinach, tobacco, or tobacco leaves. Methods Enzymol 90:515–521

    Article  CAS  PubMed  Google Scholar 

  19. Parry MAJ, Andralojc PJ, Parmar S et al (1997) Regulation of rubisco by inhibitors in the light. Plant Cell Environ 20:528–534

    Article  CAS  Google Scholar 

  20. Whitney SM, Von Caemmerer S, Hudson GS, Andrews TJ (1999) Directed mutation of the Rubisco large subunit of tobacco influences photorespiration and growth. Plant Physiol 121:579–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Abbie Whiteside for the preparation of Fig 2. The authors acknowledge funding through the European Union’s Horizon2020 research and innovation programme projects CAPITALISE (grant number 862201; JA, ECS) and PhotoBoost (grant number 862127; AKML, ECS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas J. Orr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Amaral, J., Lobo, A.K.M., Carmo-Silva, E., Orr, D.J. (2024). Purification of Rubisco from Leaves. In: Covshoff, S. (eds) Photosynthesis . Methods in Molecular Biology, vol 2790. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3790-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3790-6_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3789-0

  • Online ISBN: 978-1-0716-3790-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics