Skip to main content

Detection of MicroRNAs Using Synthetic Toehold Switch in Mammalian Cells

  • Protocol
  • First Online:
Mammalian Synthetic Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2774))

  • 321 Accesses

Abstract

Engineering synthetic gene circuits to control cellular functions has a broad application in the field of synthetic biology. Synthetic RNA-based switches that can operate at the transcriptional and posttranscriptional level have also drawn significant interest for the application of next-generation therapeutics and diagnostics. Thus, RNA-based switchable platforms are needed to report dynamic cellular mechanisms which play an important role in cell development and diseases. Recently, several RNA-based switches have been designed and utilized for biosensing and molecular diagnostics. However, miRNA-based switches have not been well established or characterized, especially for eukaryotic translational control. Here, we designed a novel synthetic toehold switch for detection of exogenously and endogenously expressed miRNAs in CHO, HeLa, HEK 293, and MDA-MB-231 breast cancer cells. Multiplex detection of miR-155 and miR-21 was tested using two toehold switches to evaluate the orthogonality and programmability of this synthetic platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lin S, Gregory RI (2015) MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15:321–333

    Article  CAS  PubMed Central  Google Scholar 

  2. Hayes J, Peruzzi PP, Lawler S (2014) MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 20:460–469

    Article  CAS  Google Scholar 

  3. Jansson MD, Lund AH (2012) MicroRNA and cancer. Mol Oncol 6:590–610

    Article  CAS  PubMed Central  Google Scholar 

  4. Suzuki HI, Katsura A et al (2015) MicroRNA regulons in tumor microenvironment. Oncogene 34:3085–3094

    Article  CAS  Google Scholar 

  5. Forterre A, Komuro H et al (2020) A comprehensive review of cancer microRNA therapeutic delivery strategies. Cancers 12:1852

    Article  CAS  PubMed Central  Google Scholar 

  6. Wilczynska A, Bushell M (2015) The complexity of miRNA-mediated repression. Cell Death Differ 22:22–33

    Article  CAS  Google Scholar 

  7. Suarez Y, Sessa WC (2009) MicroRNAs as novel regulators of angiogenesis. Circ Res 104:442–454

    Article  CAS  PubMed Central  Google Scholar 

  8. Urbich C, Kuehbacher A, Dimmeler S (2008) Role of microRNAs in vascular diseases, inflammation and angiogenesis. Cardiovasc Res 79:581

    Article  CAS  Google Scholar 

  9. Khurana R, Simons M et al (2005) Role of angiogenesis in cardiovascular disease a critical appraisal. Circulation 112:1813–1824

    Article  Google Scholar 

  10. Anastasiadou E, Jacob LS, Slack FJ (2018) Non-coding RNA networks in cancer. Nat Rev Cancer 18:5

    Article  CAS  Google Scholar 

  11. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222

    Article  CAS  Google Scholar 

  12. Wojciechowska A, Braniewska A, Kozar-Kamińska K (2017) MicroRNA in cardiovascular biology and disease. Adv Clin Exp Med 26:865–874

    Article  Google Scholar 

  13. Tribolet L, Kerr E et al (2020) MicroRNA biomarkers for infectious diseases: from basic research to biosensing. Front Microbiol 11:1197

    Article  PubMed Central  Google Scholar 

  14. Hu S, Zhu W et al (2014) MicroRNA-155 broadly orchestrates inflammation-induced changes of microRNA expression in breast cancer. Cell Res 24:254–257

    Article  CAS  Google Scholar 

  15. Eis PS, Tam W et al (2005) Accumulation of MiR-155 and BIC RNA in human b cell lymphomas. Proc Natl Acad Sci U S A 102:3627–3632

    Article  CAS  PubMed Central  Google Scholar 

  16. Takahashi RU, Miyazaki H, Ochiya T (2015) The roles of microRNAs in breast cancer. Cancers (Basel) 7:598–616

    Article  CAS  Google Scholar 

  17. Nana-Sinkam SP, Croce CM (2011) MicroRNAs as therapeutic targets in cancer. Transl Res 157:216–225

    Article  CAS  Google Scholar 

  18. Wang S, Xiao Y et al (2018) A gapmer aptamer nanobiosensor for real-time monitoring of transcription and translation in single cells. Biomaterials 156:56–64

    Article  CAS  Google Scholar 

  19. Wang S, Majumder S et al (2018) Simultaneous monitoring of transcription and translation in mammalian cell-free expression in bulk and in cell-sized droplets. Synth Biol 3:ysy005

    Article  CAS  Google Scholar 

  20. Wang S, Sun J et al (2016) A nanobiosensor for dynamic single cell analysis during microvascular self-organization. Nanoscale 8:16894–16901

    Article  CAS  PubMed Central  Google Scholar 

  21. Wang S, Riahi R et al (2015) Single cell nanobiosensors for dynamic gene expression profiling in native tissue microenvironments. Adv Mater 27:6034–6038

    Article  CAS  Google Scholar 

  22. Jusiak B, Cleto S et al (2016) Engineering synthetic gene circuits in living cells with CRISPR technology. Trends Biotechnol 34:535–547

    Article  CAS  Google Scholar 

  23. Ausländer S, Fussenegger M (2017) Synthetic RNA-based switches for mammalian gene expression control. Curr Opin Biotechnol 48:54–60

    Article  Google Scholar 

  24. Matsuura S, Ono H et al (2018) Synthetic RNA-based logic computation in mammalian cells. Nat Commun 9:1–8

    Article  CAS  Google Scholar 

  25. Rossetti M, Del Grosso E et al (2019) Programmable RNA-based systems for sensing and diagnostic applications. Anal Bioanal Chem 411:4293–4302

    Article  CAS  Google Scholar 

  26. Deng R, Tang L et al (2014) Toehold-initiated rolling circle amplification for visualizing individual microRNAs in situ in single cells. Angew Chem 126:2421–2425

    Article  Google Scholar 

  27. Shen C-C, Hsu M-N et al (2019) Synthetic switch to minimize CRISPR off-target effects by self-restricting cas9 transcription and translation. Nucleic Acids Res 47:e13–e13

    Article  Google Scholar 

  28. Endo K, Hayashi K, Saito H (2016) High-resolution identification and separation of living cell types by multiple microRNA-responsive synthetic mRNAs. Sci Rep 6:1–8

    Article  Google Scholar 

  29. Miki K, Endo K et al (2015) Efficient detection and purification of cell populations using synthetic microRNA switches. Cell Stem Cell 16:699–711

    Article  CAS  Google Scholar 

  30. Hirosawa M, Fujita Y et al (2017) Cell-type-specific genome editing with a microRNA-responsive CRISPR–Cas9 switch. Nucleic Acids Res 45:e118–e118

    Article  CAS  PubMed Central  Google Scholar 

  31. Green AA, Silver PA et al (2014) Toehold switches: De-novo-designed regulators of gene expression. Cell 159:925–939

    Article  CAS  PubMed Central  Google Scholar 

  32. Mousavi PS, Smith SJ et al (2020) A multiplexed, electrochemical interface for gene-circuit-based sensors. Nat Chem 12:48–55

    Article  Google Scholar 

  33. Pardee K, Green AA et al (2016) Rapid, low-cost detection of zika virus using programmable biomolecular components. Cell 165:1255–1266

    Article  CAS  Google Scholar 

  34. Da Silva SJR, Silva CT, a. D. et al (2020) Clinical and laboratory diagnosis of sars-cov-2, the virus causing covid-19. ACS Infect Dis 6:2319–2336

    Article  Google Scholar 

  35. Wang S, Emery NJ, Liu AP (2019) A novel synthetic toehold switch for microRNA detection in mammalian cells. ACS Synth Biol 8:1079–1088

    Article  CAS  Google Scholar 

  36. Cui W, Meng W et al (2019) TGF-β-induced long non-coding RNA MiR155hg promotes the progression and EMT of laryngeal squamous cell carcinoma by regulating the MiR-155-5p/sox10 axis. Int J Oncol 54:2005–2018

    CAS  PubMed Central  Google Scholar 

  37. Xie F, Ling L et al (2018) TGF-β signaling in cancer metastasis. Acta Biochim Biophys Sin 50:121–132

    Article  CAS  Google Scholar 

  38. Adams JM, Cory S (2018) The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ 25:27

    Article  CAS  Google Scholar 

  39. Li D-P, Fan J et al (2017) MiR-155 up-regulated by TGF-β promotes epithelial-mesenchymal transition, invasion and metastasis of human hepatocellular carcinoma cells in vitro. Am J Transl Res 9:2956

    CAS  PubMed Central  Google Scholar 

  40. Louafi F, Martinez-Nunez RT, Sanchez-Elsner T (2010) MicroRNA-155 targets smad2 and modulates the response of macrophages to transforming growth factor-β. J Biol Chem 285:41328–41336

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shue Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhao, Y., Poudel, P., Wang, S. (2024). Detection of MicroRNAs Using Synthetic Toehold Switch in Mammalian Cells. In: Ceroni, F., Polizzi, K. (eds) Mammalian Synthetic Systems. Methods in Molecular Biology, vol 2774. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3718-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3718-0_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3717-3

  • Online ISBN: 978-1-0716-3718-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics