Skip to main content

Ion Channels and Metal Ions in Parkinson’s Disease: Historical Perspective to the Current Scenario

  • Protocol
  • First Online:
Neuroprotection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2761))

Abstract

Parkinson’s disease (PD) is a neurodegenerative condition linked to the deterioration of motor and cognitive performance. It produces degeneration of the dopaminergic neurons along the nigrostriatal pathway in the central nervous system (CNS), which leads to symptoms such as bradykinesias, tremors, rigidity, and postural instability. There are several medications currently approved for the therapy of PD, but a permanent cure for it remains elusive. With the aging population set to increase, a number of PD cases are expected to shoot up in the coming times. Hence, there is a need to look for new molecular targets that could be investigated both preclinically and clinically for PD treatment. Among these, several ion channels and metal ions are being studied for their effects on PD pathology and the functioning of dopaminergic neurons. Ion channels such as N-methyl-D-aspartate (NMDA), γ-aminobutyric acid A (GABAA), voltage-gated calcium channels, potassium channels, HCN channels, Hv1 proton channels, and voltage-gated sodium channels and metal ions such as mercury, zinc, copper, iron, manganese, calcium, and lead showed prominent involvement in PD. Pharmacological agents have been used to target these ion channels and metal ions to prevent or treat PD. Hence, in the present review, we summarize the pathophysiological events linked to PD with an emphasis on the role of ions and ion channels in PD pathology, and pharmacological agents targeting these ion channels have also been listed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sheerin UM, Houlden H, Wood NW (2014) Advances in the genetics of Parkinson’s disease: a guide for the clinician. Mov Disord Clin Pract 1(1):3–13

    Article  PubMed  PubMed Central  Google Scholar 

  2. Galvan A, Wichmann T (2008) Pathophysiology of parkinsonism. Clin Neurophysiol 7(119):1459–1474

    Article  Google Scholar 

  3. Parkinson J (2002) An essay on the shaking palsy. 1817. J Neuropsychiatry Clin Neurosci 2(14):223–236; discussion 2

    Article  Google Scholar 

  4. Lees AJ (2007) Unresolved issues relating to the shaking palsy on the celebration of James Parkinson’s 250th birthday. Mov Disord S17(22 Suppl 17):S327–S334

    Article  Google Scholar 

  5. Thapak P, Vaidya B, Joshi HC, Singh JN, Sharma SS (2020) Therapeutic potential of pharmacological agents targeting TRP channels in CNS disorders. Pharmacol Res 159:105026

    Article  CAS  PubMed  Google Scholar 

  6. Duda J, Potschke C, Liss B (2016) Converging roles of ion channels, calcium, metabolic stress, and activity pattern of substantia nigra dopaminergic neurons in health and Parkinson’s disease. J Neurochem Suppl Suppl 1(139 Suppl 1):156–178

    Article  Google Scholar 

  7. Vaidya B, Roy I, Sharma SS (2022) Neuroprotective potential of HC070, a potent TRPC5 channel inhibitor in Parkinson’s disease models: a behavioral and mechanistic study. ACS Chem Neurosci 18(13):2728–2742

    Article  Google Scholar 

  8. Wang S, Wang B, Shang D, Zhang K, Yan X, Zhang X (2022) Ion channel dysfunction in astrocytes in neurodegenerative diseases. Front Physiol 13:814285

    Article  PubMed  PubMed Central  Google Scholar 

  9. Neve KA, Seamans JK, Trantham-Davidson H (2004) Dopamine receptor signaling. J Recept Signal Transduct Res 3(24):165–205

    Article  Google Scholar 

  10. Beaulieu JM, Espinoza S, Gainetdinov RR (2015) Dopamine receptors–IUPHAR review 13. Br J Pharmacol 1(172):1–23

    Article  Google Scholar 

  11. Levey AI, Hersch SM, Rye DB, Sunahara RK, Niznik HB, Kitt CA et al (1993) Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci U S A 19(90):8861–8865

    Article  Google Scholar 

  12. Franco R, Reyes-Resina I, Navarro GJB (2021) Dopamine in health and disease: much more than a neurotransmitter. Biomedicines 2(9):109

    Google Scholar 

  13. Kant R, Meena MK, Pathania M (2021) Dopamine: a modulator of circadian rhythms/biological clock. J Adv Med Med Res 2(8):316–324

    Google Scholar 

  14. Bezard E, Przedborski S (2011) A tale on animal models of Parkinson’s disease. Mov Disord 6(26):993–1002

    Article  Google Scholar 

  15. Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 5(30):194–202

    Article  Google Scholar 

  16. Farde L, Nordstrom AL, Wiesel FA, Pauli S, Halldin C, Sedvall G (1992) Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry 7(49):538–544

    Article  Google Scholar 

  17. Money KM, Stanwood GD (2013) Developmental origins of brain disorders: roles for dopamine. Front Cell Neurosci 7:260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stevens JR (1979) Schizophrenia and dopamine regulation in the mesolimbic system. Trends Neurosci 2:102–105

    Article  Google Scholar 

  19. Habibi M (2010) Dopamine receptors. In: Kompoliti K, Metman LV (eds) Encyclopedia of movement disorders. Academic Press, Cambridge, Massachusetts, pp 326–329

    Chapter  Google Scholar 

  20. Muller EE, Locatelli V, Cella S, Penalva A, Novelli A, Cocchi D (1983) Prolactin-lowering and -releasing drugs. Mechanisms of action and therapeutic applications. Drugs 4(25):399–432

    Article  Google Scholar 

  21. Escande MV, Taravini IR, Zold CL, Belforte JE, Murer MG (2016) Loss of homeostasis in the direct pathway in a mouse model of asymptomatic Parkinson’s disease. J Neurosci 21(36):5686–5698

    Article  Google Scholar 

  22. Katzung BG, Masters SB, Trevor AJ (2004) Basic & clinical pharmacology. 8. McGraw-Hill Medical, New York, pp 483–493

    Google Scholar 

  23. Schneider SA, Obeso JA (2014) Clinical and pathological features of Parkinson’s disease. In: Behavioral neurobiology of Huntington’s disease and Parkinson’s disease. Springer, Heidelberg, pp 205–220

    Chapter  Google Scholar 

  24. Brunton L, Knollman B, Chabner B (2011) Goodman & Gilman’s the pharmacological basis of therapeutics, 12th edn. McGraw-Hill Medical, New York, pp 609–628

    Google Scholar 

  25. Klein C, Schlossmacher MG (2006) The genetics of Parkinson disease: implications for neurological care. Nat Clin Pract Neurol 3(2):136–146

    Article  Google Scholar 

  26. Trojanowski JQ, Lee VM (1998) Aggregation of neurofilament and alpha-synuclein proteins in Lewy bodies: implications for the pathogenesis of Parkinson disease and Lewy body dementia. Arch Neurol 2(55):151–152

    Google Scholar 

  27. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J et al (2017) Parkinson disease. Nat Rev Dis Primers 3:17013

    Article  PubMed  Google Scholar 

  28. Mullin S, Schapira A (2015) The genetics of Parkinson’s disease. Br Med Bull 1(114):39–52

    Article  Google Scholar 

  29. Klein C, Westenberger A (2012) Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med 1(2):a008888

    Google Scholar 

  30. Li J, Yang D, Li Z, Zhao M, Wang D, Sun Z et al (2023) PINK1/Parkin-mediated mitophagy in neurodegenerative diseases. Ageing Res Rev 84:101817

    Article  CAS  PubMed  Google Scholar 

  31. Hirsch EC, Jenner P, Przedborski S (2013) Pathogenesis of Parkinson’s disease. Mov Disord 1(28):24–30

    Article  Google Scholar 

  32. Zimprich A, Benet-Pages A, Struhal W, Graf E, Eck SH, Offman MN et al (2011) A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet 1(89):168–175

    Article  Google Scholar 

  33. Vila M, Przedborski S (2004) Genetic clues to the pathogenesis of Parkinson’s disease. Nat Med 10 Suppl:S58–S62

    Article  PubMed  Google Scholar 

  34. Elbaz A, Carcaillon L, Kab S, Moisan F (2016) Epidemiology of Parkinson’s disease. Rev Neurol (Paris) 1(172):14–26

    Article  Google Scholar 

  35. Chen H, Zhang SM, Hernan MA, Willett WC, Ascherio A (2002) Diet and Parkinson’s disease: a potential role of dairy products in men. Ann Neurol 6(52):793–801

    Article  Google Scholar 

  36. Ascherio A, Chen H, Weisskopf MG, O’Reilly E, McCullough ML, Calle EE et al (2006) Pesticide exposure and risk for Parkinson’s disease. Ann Neurol 2(60):197–203

    Article  Google Scholar 

  37. Caudle WM, Guillot TS, Lazo CR, Miller GW (2012) Industrial toxicants and Parkinson’s disease. Neurotoxicology 2(33):178–188

    Article  Google Scholar 

  38. Vellingiri B, Suriyanarayanan A, Abraham KS, Venkatesan D, Iyer M, Raj N et al (2022) Influence of heavy metals in Parkinson’s disease: an overview. J Neurol 11(269):5798–5811

    Article  Google Scholar 

  39. Przedborski S (2017) The two-century journey of Parkinson disease research. Nat Rev Neurosci 4(18):251–259

    Article  Google Scholar 

  40. Reeve A, Simcox E, Turnbull D (2014) Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res Rev 100(14):19–30

    Article  Google Scholar 

  41. Davis KL, Charney D, Coyle JT, Nemeroff C (2002) Neuropsychopharmacology: the fifth generation of progress. American College of Neuropsychopharmacology: Lippincott Williams & Wilkins, Philadelphia, Pennsylvania

    Google Scholar 

  42. Vaidya B, Sharma SS (2020) Transient receptor potential channels as an emerging target for the treatment of Parkinson’s disease: an insight into role of pharmacological interventions. Front Cell Dev Biol 8:584513

    Article  PubMed  PubMed Central  Google Scholar 

  43. Daniel NH, Aravind A, Thakur PJN (2021) Are ion channels potential therapeutic targets for Parkinson’s disease? Neurotoxicology 87:243–257

    Article  CAS  PubMed  Google Scholar 

  44. Majláth Z, Vécsei L (2014) NMDA antagonists as Parkinson’s disease therapy: disseminating the evidence. Neurodegener Dis Manag 4(1):23–30

    Article  PubMed  Google Scholar 

  45. Ravenscroft P, Brotchie J (2000) NMDA receptors in the basal ganglia. J Anat Pt 4(196 (Pt 4)):577–585

    Article  Google Scholar 

  46. Gan J, Qi C, Mao L-M, Liu Z (2014) Changes in surface expression of N-methyl-D-aspartate receptors in the striatum in a rat model of Parkinson’s disease. Drug Des Devel Ther 8:165

    PubMed  PubMed Central  Google Scholar 

  47. Ulas J, Weihmuller FB, Brunner LC, Joyce JN, Marshall JF, Cotman CW (1994) Selective increase of NMDA-sensitive glutamate binding in the striatum of Parkinson’s disease, Alzheimer’s disease, and mixed Parkinson’s disease/Alzheimer’s disease patients: an autoradiographic study. J Neurosci 11 Pt 1(14):6317–6324

    Article  Google Scholar 

  48. Xu H, Liu X, Xia J, Yu T, Qu Y, Jiang H et al (2018) Activation of NMDA receptors mediated iron accumulation via modulating iron transporters in Parkinson’s disease. The FASEB Journal fj. 201800060RR 32:6100

    Article  CAS  Google Scholar 

  49. Mellone M, Stanic J, Hernandez LF, Iglesias E, Zianni E, Longhi A et al (2015) NMDA receptor GluN2A/GluN2B subunit ratio as synaptic trait of levodopa-induced dyskinesias: from experimental models to patients. Front Cell Neurosci 9:245

    Article  PubMed  PubMed Central  Google Scholar 

  50. Iderberg H, Rylander D, Bimpisidis Z, Cenci MA (2013) Modulating mGluR5 and 5-HT1A/1B receptors to treat l-DOPA-induced dyskinesia: effects of combined treatment and possible mechanisms of action. Exp Neurol 250:116–124

    Article  CAS  PubMed  Google Scholar 

  51. Chan H, Paur H, Vernon AC, Zabarsky V, Datla KP, Croucher MJ et al (2010) Neuroprotection and functional recovery associated with decreased microglial activation following selective activation of mGluR2/3 receptors in a rodent model of Parkinson’s disease. Parkinsons Dis 2010:1

    Article  Google Scholar 

  52. Bennouar K-E, Uberti MA, Melon C, Bacolod MD, Jimenez HN, Cajina M et al (2013) Synergy between L-DOPA and a novel positive allosteric modulator of metabotropic glutamate receptor 4: implications for Parkinson’s disease treatment and dyskinesia. Neuropharmacology 66:158–169

    Article  CAS  PubMed  Google Scholar 

  53. Ahmed I, Bose SK, Pavese N, Ramlackhansingh A, Turkheimer F, Hotton G et al (2011) Glutamate NMDA receptor dysregulation in Parkinson’s disease with dyskinesias. Brain 4(134):979–986

    Article  Google Scholar 

  54. Dong XX, Wang Y, Qin ZH (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 4(30):379–387

    Article  Google Scholar 

  55. Olivares D, Deshpande VK, Shi Y, Lahiri DK, Greig NH, Rogers JT et al (2012) N-methyl D-aspartate (NMDA) receptor antagonists and memantine treatment for Alzheimer’s disease, vascular dementia and Parkinson’s disease. Curr Alzheimer Res 6(9):746–758

    Article  Google Scholar 

  56. Chen LW, Wei LC, Lang B, Ju G, Chan YS (2001) Differential expression of AMPA receptor subunits in dopamine neurons of the rat brain: a double immunocytochemical study. Neuroscience 1(106):149–160

    Article  Google Scholar 

  57. Sobolevsky AI, Rosconi MP, Gouaux E (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 7274(462):745–756

    Article  Google Scholar 

  58. Löschmann P-A, Lange KW, Kunow M, Rettig K-J, Jähnig P, Honore T et al (1991) Synergism of the AMPA-antagonist NBQX and the NMDA-antagonist CPP with L-dopa in models of Parkinson’s disease. J Neural Transm Park Dis Dement Sect 3(3):203–213

    Article  PubMed  Google Scholar 

  59. Konitsiotis S, Blanchet PJ, Verhagen L, Lamers E, Chase TN (2000) AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys. Neurology 8(54):1589–1595

    Article  Google Scholar 

  60. Pinheiro P, Mulle C (2006) Kainate receptors. Cell Tissue Res 2(326):457–482

    Article  Google Scholar 

  61. Jane DE, Lodge D, Collingridge GL (2009) Kainate receptors: pharmacology, function and therapeutic potential. Neuropharmacology 1(56):90–113

    Article  Google Scholar 

  62. Lerma J (2006) Kainate receptor physiology. Curr Opin Pharmacol 1(6):89–97

    Article  Google Scholar 

  63. Petralia RS, Wang YX, Wenthold RJ (1994) Histological and ultrastructural localization of the kainate receptor subunits, KA2 and GluR6/7, in the rat nervous system using selective antipeptide antibodies. J Comp Neurol 1(349):85–110

    Article  Google Scholar 

  64. Kieval JZ, Hubert GW, Charara A, Pare JF, Smith Y (2001) Subcellular and subsynaptic localization of presynaptic and postsynaptic kainate receptor subunits in the monkey striatum. J Neurosci 22(21):8746–8757

    Article  Google Scholar 

  65. Chagnac-Amitai Y, Connors BW (1989) Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. J Neurophysiol 4(61):747–758

    Article  Google Scholar 

  66. Walls AB, Waagepetersen HS, Bak LK, Schousboe A, Sonnewald U (2015) The glutamine-glutamate/GABA cycle: function, regional differences in glutamate and GABA production and effects of interference with GABA metabolism. Neurochem Res 2(40):402–409

    Article  Google Scholar 

  67. Angelotti TP, Macdonald RL (1993) Assembly of GABAA receptor subunits: alpha 1 beta 1 and alpha 1 beta 1 gamma 2S subunits produce unique ion channels with dissimilar single-channel properties. J Neurosci 4(13):1429–1440

    Google Scholar 

  68. Olsen RW, DeLorey TM (1999) GABA receptor physiology and pharmacology. In: GJ S, BW A, RW A (ed) Basic neurochemistry: molecular, cellular and medical aspects. Lippincott-Raven, Philadelphia

    Google Scholar 

  69. Munoz MD, de la Fuente N, Sanchez-Capelo A (2020) TGF-β/Smad3 Signalling modulates GABA neurotransmission: implications in Parkinson’s disease. Int J Mol Sci 2(21):590

    Google Scholar 

  70. Munoz MD, Antolin-Vallespin M, Tapia-Gonzalez S, Sanchez-Capelo A (2016) Smad3 deficiency inhibits dentate gyrus LTP by enhancing GABAA neurotransmission. J Neurochem 2(137):190–199

    Article  Google Scholar 

  71. Chen XY, Xue Y, Wang H, Zhu SH, Hao XM, Chen L (2013) Modulation of firing activity by endogenous GABAA receptors in the globus pallidus of MPTP-treated parkinsonian mice. Neurosci Bull 6(29):701–707

    Article  Google Scholar 

  72. NCT03000569. A study to evaluate SAGE-217 in participants with Parkinson’s disease: Sage Therapeutics. Available from: https://clinicaltrials.gov/ct2/show/NCT03000569

  73. Mograbi KDM, de Castro ACF, de Oliveira JAR, Sales PJB, Covolan L, Del Bel EA et al (2017) Effects of GABAa receptor antagonists on motor behavior in pharmacological Parkinson9s disease model in mice. Physiol Rep 6(5):e13081

    Article  Google Scholar 

  74. Boyes J, Bolam JP (2007) Localization of GABA receptors in the basal ganglia. Prog Brain Res 160:229–243

    Article  CAS  PubMed  Google Scholar 

  75. Daniele A, Panza F, Greco A, Logroscino G, Seripa D (2016) Can a positive allosteric modulation of GABAergic receptors improve motor symptoms in patients with Parkinson’s disease? The potential role of zolpidem in the treatment of Parkinson’s disease. Parkinson’s Dis 2016:1

    Article  Google Scholar 

  76. Lloyd K, Shemen L, Hornykiewicz O (1977) Distribution of high affinity sodium-independent [3 H] gamma-aminobutyric acid ([3 H] GABA) binding in the human brain: alterations in Parkinson’s disease. Brain Res 2(127):269–278

    Article  Google Scholar 

  77. Calon F, Goulet M, Blanchet P, Martel J, Piercey M, Be P et al (1995) Levodopa or D2 agonist induced dyskinesia in MPTP monkeys: correlation with changes in dopamine and GABA A, receptors in the striatopallidal complex. Brain Res 1(680):43–52

    Article  Google Scholar 

  78. Capiod T (2016) Extracellular calcium has multiple targets to control cell proliferation. In: Calcium entry pathways in non-excitable cells. Springer, Cham, pp 133–156

    Google Scholar 

  79. La Rovere RM, Roest G, Bultynck G, Parys JB (2016) Intracellular Ca(2+) signaling and Ca(2+) microdomains in the control of cell survival, apoptosis and autophagy. Cell Calcium 2(60):74–87

    Article  Google Scholar 

  80. Pchitskaya E, Popugaeva E, Bezprozvanny I (2018) Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium 70:87–94

    Article  CAS  PubMed  Google Scholar 

  81. Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E et al (2000) Nomenclature of voltage-gated calcium channels. Neuron 3(25):533–535

    Article  Google Scholar 

  82. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 4(57):411–425

    Article  Google Scholar 

  83. Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T et al (2007) ‘Rejuvenation’protects neurons in mouse models of Parkinson’s disease. Nature 7148(447):1081–1086

    Article  Google Scholar 

  84. Wang QM, Xu YY, Liu S, Ma ZG (2017) Isradipine attenuates MPTP-induced dopamine neuron degeneration by inhibiting up-regulation of L-type calcium channels and iron accumulation in the substantia nigra of mice. Oncotarget 29(8):47284–47295

    Article  Google Scholar 

  85. Kupsch E-M, Aubel D, Gibbs CP, Kahrs AF, Rudel T, Meyer TF (1996) Construction of hermes shuttle vectors: a versatile system useful for genetic complementation of transformable and non-transformable Neisseria mutants. Mol Gen Genet MGG 5(250):558–569

    Google Scholar 

  86. Ilijic E, Guzman J, Surmeier D (2011) The L-type channel antagonist isradipine is neuroprotective in a mouse model of Parkinson’s disease. Neurobiol Dis 2(43):364–371

    Article  Google Scholar 

  87. Kang S, Cooper G, Dunne SF, Dusel B, Luan C-H, Surmeier DJ et al (2012) CaV1. 3-selective L-type calcium channel antagonists as potential new therapeutics for Parkinson’s disease. Nat Commun 3:1146

    Article  PubMed  Google Scholar 

  88. Hurley MJ, Gentleman SM, Dexter DT (2015) Calcium CaV1 channel subtype mRNA expression in Parkinson’s disease examined by in situ hybridization. J Mol Neurosci 3(55):715–724

    Article  Google Scholar 

  89. Devergnas A, Chen E, Ma Y, Hamada I, Pittard D, Kammermeier S et al (2016) Anatomical localization of Cav3.1 calcium channels and electrophysiological effects of T-type calcium channel blockade in the motor thalamus of MPTP-treated monkeys. J Neurophysiol 1(115):470–485

    Article  Google Scholar 

  90. Poetschke C, Dragicevic E, Duda J, Benkert J, Dougalis A, DeZio R et al (2015) Compensatory T-type Ca2+ channel activity alters D2-autoreceptor responses of Substantia nigra dopamine neurons from Cav1.3 L-type Ca2+ channel KO mice. Sci Rep 5:13688

    Article  PubMed  PubMed Central  Google Scholar 

  91. Xiang Z, Thompson AD, Brogan JT, Schulte ML, Melancon BJ, Mi D et al (2011) The discovery and characterization of ML218: a novel, centrally active T-type calcium channel inhibitor with robust effects in STN neurons and in a rodent model of Parkinson’s disease. ACS Chem Neurosci 12(2):730–742

    Article  Google Scholar 

  92. Brustovetsky T, Brittain MK, Sheets PL, Cummins TR, Pinelis V, Brustovetsky N (2011) KB-R7943, an inhibitor of the reverse Na+/Ca2+ exchanger, blocks N-methyl-D-aspartate receptor and inhibits mitochondrial complex I. Br J Pharmacol 1(162):255–270

    Article  Google Scholar 

  93. Chen X, Xue B, Wang J, Liu H, Shi L, Xie J (2018) Potassium channels: a potential therapeutic target for Parkinson’s disease. Neurosci Bull 2(34):341–348

    Article  Google Scholar 

  94. Piri H, Haghdoost-Yazdi H, Fraidouni N, Dargahi T, Yaghoubidoust M, Azadmehr A (2017) The anti-parkinsonism effects of K(ATP) channel blockade in the 6-hydroxydopamine-induced animal model: the role of oxidative stress. Basic Clin Neurosci 3(8):183–192

    Google Scholar 

  95. Tai KK, Truong DD (2002) Activation of adenosine triphosphate-sensitive potassium channels confers protection against rotenone-induced cell death: therapeutic implications for Parkinson’s disease. J Neurosci Res 4(69):559–566

    Article  Google Scholar 

  96. Wang S, Hu LF, Yang Y, Ding JH, Hu G (2005) Studies of ATP-sensitive potassium channels on 6-hydroxydopamine and haloperidol rat models of Parkinson’s disease: implications for treating Parkinson’s disease? Neuropharmacology 7(48):984–992

    Article  Google Scholar 

  97. Ren Y, Ye M, Chen S, Ding J (2016) CD200 inhibits inflammatory response by promoting KATP channel opening in microglia cells in Parkinson’s disease. Med Sci Monit 22:1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cao X, Cao L, Ding L, Bian J-s (2017) A new hope for a devastating disease: hydrogen sulfide in Parkinson’s disease. Mol Neurobiol 55(5):1–11

    Google Scholar 

  99. Dolga AM, de Andrade A, Meissner L, Knaus HG, Hollerhage M, Christophersen P et al (2014) Subcellular expression and neuroprotective effects of SK channels in human dopaminergic neurons. Cell Death Dis 1(5):e999

    Article  Google Scholar 

  100. Wang Y, Qu L, Wang X-L, Gao L, Li Z-Z, Gao G-D et al (2015) Firing pattern modulation through SK channel current increase underlies neuronal survival in an organotypic slice model of Parkinson’s disease. Mol Neurobiol 1(51):424–436

    Article  Google Scholar 

  101. DiFrancesco JC, DiFrancesco D (2015) Dysfunctional HCN ion channels in neurological diseases. Front Cell Neurosci 6:174

    Article  PubMed  PubMed Central  Google Scholar 

  102. Chu HY, Zhen X (2010) Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels in the regulation of midbrain dopamine systems. Acta Pharmacol Sin 9(31):1036–1043

    Article  Google Scholar 

  103. Wu LJ (2014) Voltage-gated proton channel HV1 in microglia. Neuroscientist 6(20):599–609

    Article  Google Scholar 

  104. Neal ML, Beier EE, Hossain MM, Boyle A, Zheng J, Kim C et al (2023) Voltage-gated proton channel Hv1 regulates neuroinflammation and dopaminergic neurodegeneration in Parkinson’s disease models. Antioxidants (Basel) 12(3):582

    Article  CAS  PubMed  Google Scholar 

  105. Black JA, Waxman SG (2012) Sodium channels and microglial function. Exp Neurol 2(234):302–315

    Article  Google Scholar 

  106. Zhu H, Wang Z, Jin J, Pei X, Zhao Y, Wu H et al (2016) Parkinson’s disease-like forelimb akinesia induced by BmK I, a sodium channel modulator. Behav Brain Res 308:166–176

    Article  CAS  PubMed  Google Scholar 

  107. Wang Z, Lin Y, Liu W, Kuang P, Lao W, Ji Y et al (2019) Voltage-gated sodium channels are involved in cognitive impairments in Parkinson’s disease- like rats. Neuroscience 418:231–243

    Article  CAS  PubMed  Google Scholar 

  108. Liu W, Lao W, Zhang R, Zhu H (2021) Altered expression of voltage gated sodium channel Nav1.1 is involved in motor ability in MPTP-treated mice. Brain Res Bull 170:187–198

    Article  CAS  PubMed  Google Scholar 

  109. Wang Z, Kuang P, Lin Y, Liu W, Lao W, Ji Y et al (2018) Re-expression of voltage-gated sodium channel subtype Nav1.3 in the substantia nigra after dopamine depletion. Neurosci Lett 687:146–152

    Article  CAS  PubMed  Google Scholar 

  110. Moyano P, Vicente-Zurdo D, Blazquez-Barbadillo C, Menendez JC, Gonzalez JF, Rosales-Conrado N et al (2021) Neuroprotective action of multitarget 7-Aminophenanthridin-6(5H)-one derivatives against metal-induced cell death and oxidative stress in SN56 cells. ACS Chem Neurosci 18(12):3358–3372

    Article  Google Scholar 

  111. Moustakas M (2021) The role of metal ions in biology, biochemistry and medicine. Materials (Basel, Switzerland) 3(14):549

    Google Scholar 

  112. Pyatha S, Kim H, Lee D, Kim K (2022) Association between heavy metal exposure and Parkinson’s disease: a review of the mechanisms related to oxidative stress. Antioxidants (Basel, Switzerland) 12(11):2467

    Google Scholar 

  113. Uversky VN, Li J, Fink AL (2001) Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem 47(276):44284–44296

    Article  Google Scholar 

  114. Bjorklund G, Stejskal V, Urbina MA, Dadar M, Chirumbolo S, Mutter J (2018) Metals and Parkinson’s disease: mechanisms and biochemical processes. Curr Med Chem 19(25):2198–2214

    Article  Google Scholar 

  115. Pamphlett R, Bishop DP (2022) Mercury is present in neurons and oligodendrocytes in regions of the brain affected by Parkinson’s disease and co-localises with Lewy bodies. PLoS One 1(17):e0262464

    Article  Google Scholar 

  116. Sørensen JC, Slomianka L, Christensen J, Zimmer J (1990) Zinc-containing telencephalic connections to the rat striatum: a combined Fluoro-Gold tracing and histochemical study. Exp Brain Res 3(105):370–382

    Google Scholar 

  117. Bitanihirwe BK, Cunningham MG (2009) Zinc: the brain’s dark horse. Synapse 11(63):1029–1049

    Article  Google Scholar 

  118. Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P et al (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 6(52):1830–1836

    Article  Google Scholar 

  119. Dexter DT, Jenner P, Schapira AH, Marsden CD (1992) Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative diseases affecting the basal ganglia. The Royal Kings and Queens Parkinson’s Disease Research Group. Ann Neurol S1(32 Suppl):S94–S100

    Article  Google Scholar 

  120. Jenner P, Dexter D, Sian J, Schapira A, Marsden C (1992) Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease. Ann Neurol S1(32):S82

    Article  Google Scholar 

  121. Brewer GJ, Kanzer SH, Zimmerman EA, Molho ES, Celmins DF, Heckman SM et al (2010) Subclinical zinc deficiency in Alzheimer’s disease and Parkinson’s disease. Am J Alzheimers Dis Other Dement 7(25):572–575

    Article  Google Scholar 

  122. Ahmed SS, Santosh W (2010) Metallomic profiling and linkage map analysis of early Parkinson’s disease: a new insight to aluminum marker for the possible diagnosis. PLoS One 6(5):e11252

    Article  Google Scholar 

  123. Bisaglia M, Bubacco L (2020) Copper ions and Parkinson’s disease: why is homeostasis so relevant? Biomol Ther 2(10):195

    Google Scholar 

  124. Abbaoui A, El Hiba O, Gamrani H (2016) Copper poisoning induces neurobehavioral features of Parkinson’s disease in rat: alters dopaminergic system and locomotor performance. Parkinsonism Relat Disord 22:e188

    Article  Google Scholar 

  125. Eid R, Arab NT, Greenwood MT (2017) Iron mediated toxicity and programmed cell death: a review and a re-examination of existing paradigms. Biochim Biophys Acta, Mol Cell Res 2(1864):399–430

    Article  Google Scholar 

  126. Takahashi H, Watanabe Y, Tanaka H, Mihara M, Mochizuki H, Takahashi K et al (2018) Comprehensive MRI quantification of the substantia nigra pars compacta in Parkinson’s disease. Eur J Radiol 109:48–56

    Article  CAS  PubMed  Google Scholar 

  127. Shi L, Huang C, Luo Q, Rogers E, Xia Y, Liu W et al (2019) The association of iron and the pathologies of Parkinson’s diseases in MPTP/MPP(+)-induced neuronal degeneration in non-human primates and in cell culture. Front Aging Neurosci 11:215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kwakye GF, Paoliello M, Mukhopadhyay S, Bowman AB, Aschner M (2015) Manganese-induced Parkinsonism and Parkinson’s disease: shared and distinguishable features. Int J Environ Res Public Health 7(12):7519–7540

    Article  Google Scholar 

  129. Guilarte TR, Gonzales KK (2015) Manganese-induced parkinsonism is not idiopathic Parkinson’s disease: environmental and genetic evidence. Toxicol Sci 2(146):204–212

    Article  Google Scholar 

  130. Xu B, Huang S, Liu Y, Wan C, Gu Y, Wang D et al (2022) Manganese promotes alpha-synuclein amyloid aggregation through the induction of protein phase transition. J Biol Chem 1(298):101469

    Google Scholar 

  131. Berridge MJ (1998) Neuronal calcium signaling. Neuron 1(21):13–26

    Article  Google Scholar 

  132. Brini M, Calì T, Ottolini D, Carafoli E (2013) Intracellular calcium homeostasis and signaling. In: Metallomics and the cell. Springer, Dordrecht, pp 119–168

    Chapter  Google Scholar 

  133. Surmeier DJ, Guzman JN, Sanchez J, Schumacker PT (2012) Physiological phenotype and vulnerability in Parkinson’s disease. Cold Spring Harb Perspect Med 7(2):a009290

    Google Scholar 

  134. Neal AP, Guilarte TR (2013) Mechanisms of lead and manganese neurotoxicity. Toxicol Res 2(2):99–114

    Article  CAS  Google Scholar 

  135. Weisskopf MG, Weuve J, Nie H, Saint-Hilaire MH, Sudarsky L, Simon DK et al (2010) Association of cumulative lead exposure with Parkinson’s disease. Environ Health Perspect 11(118):1609–1613

    Article  Google Scholar 

  136. Rogers JT, Venkataramani V, Washburn C, Liu Y, Tummala V, Jiang H et al (2016) A role for amyloid precursor protein translation to restore iron homeostasis and ameliorate lead (Pb) neurotoxicity. J Neurochem 3(138):479–494

    Article  Google Scholar 

  137. Biglan KM, Oakes D, Lang AE, Hauser RA, Hodgeman K, Greco B et al (2017) A novel design of a phase III trial of isradipine in early Parkinson disease (STEADY-PD III). Ann Clin Transl Neurol 6(4):360–368

    Article  Google Scholar 

  138. Murata M, Hasegawa K, Kanazawa I, Fukasaka J, Kochi K, Shimazu R et al (2015) Zonisamide improves wearing-off in Parkinson’s disease: a randomized, double-blind study. Mov Disord 10(30):1343–1350

    Article  Google Scholar 

  139. NCT01491022. A randomized trial to evaluate Ampyra for gait impairment in Parkinson’s disease: University of Miami. Available from: https://clinicaltrials.gov/ct2/show/results/NCT01491022

  140. NCT01341080. Varenicline for gait and balance impairment in Parkinson disease (Chantix-PD): Rush University Medical Center. Available from: https://clinicaltrials.gov/ct2/show/NCT01341080

  141. Surges R, Volynski KE, Walker MC (2008) Is levetiracetam different from other antiepileptic drugs? Levetiracetam and its cellular mechanism of action in epilepsy revisited. Ther Adv Neurol Disord 1(1):13–24

    Article  PubMed  PubMed Central  Google Scholar 

  142. Yamamoto S, Takahashi N, Mori Y (2010) Chemical physiology of oxidative stress-activated TRPM2 and TRPC5 channels. Prog Biophys Mol Biol 1(103):18–27

    Article  Google Scholar 

  143. Jankovic J (2000) Complications and limitations of drug therapy for Parkinson’s disease. Neurology 12 Suppl 6(55):S2–S6

    Google Scholar 

  144. NCT00163085. The effects of an NR2B NMDA antagonist, CP-101,606, in patients with Parkinson’s disease: Pfizer. Available from: https://clinicaltrials.gov/ct2/show/NCT00163085

  145. NCT00296959. Topiramate as a treatment for Levodopa-induced dyskinesia in Parkinson’s disease: University Health Network, Toronto. Available from: https://clinicaltrials.gov/ct2/show/NCT00296959

  146. NCT00004576. Study of LY300164 for the treatment of Parkinson’s disease. Available from: https://clinicaltrials.gov/ct2/show/NCT00004576

  147. NCT00001929. Treatment of Parkinson’s disease with eliprodil: National Institute of Neurological Disorders and Stroke (NINDS). Available from: https://clinicaltrials.gov/ct2/show/NCT00001929

  148. NCT00630500. Efficacy and safety of memantine for Parkinson’s Disease Dementia (PDD) and Dementia with Lewy Bodies (DLB) (MEMPDD): Helse Stavanger HF. Available from: https://clinicaltrials.gov/ct2/show/NCT00630500

  149. NCT01474421. Safety and efficacy of AQW051 in L-dopa induced dyskinesias in patients with Parkinson’s disease: Novartis Pharmaceuticals. Available from: https://clinicaltrials.gov/ct2/show/NCT01474421

  150. NCT00001365. Dextromethorphan for the treatment of Parkinson’s disease and similar conditions of the nervous system: National Institute of Neurological Disorders and Stroke (NINDS). Available from: https://clinicaltrials.gov/ct2/show/NCT00001365

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shyam S. Sharma or Jitendra Narain Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vaidya, B., Padhy, D.S., Joshi, H.C., Sharma, S.S., Singh, J.N. (2024). Ion Channels and Metal Ions in Parkinson’s Disease: Historical Perspective to the Current Scenario. In: Ray, S.K. (eds) Neuroprotection. Methods in Molecular Biology, vol 2761. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3662-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3662-6_36

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3661-9

  • Online ISBN: 978-1-0716-3662-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics