Skip to main content

Stable Laboratory Culture System for the Ctenophore Mnemiopsis leidyi

  • Protocol
  • First Online:
Ctenophores

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2757))

Abstract

Ctenophores are marine organisms attracting significant attention from evolutionary biology, molecular biology, and ecological research. Here, we describe an easy and affordable setup to maintain a stable culture of the ctenophore Mnemiopsis leidyi. The challenging delicacy of the lobate ctenophores can be met by monitoring the water quality, providing the right nutrition, and adapting the handling and tank set-up to their fragile gelatinous body plan. Following this protocol allows stable laboratory lines, a continuous supply of embryos for molecular biological studies, and independence from population responses to environmental fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dunn CW et al (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452(7188):745

    Article  CAS  PubMed  Google Scholar 

  2. Ryan JF et al (2013) The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science 342(6164):1242592

    Article  PubMed  PubMed Central  Google Scholar 

  3. Moroz LL et al (2014) The ctenophore genome and the evolutionary origins of neural systems. Nature 510(7503):109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jékely G, Keijzer F, Godfrey-Smith P (2015) An option space for early neural evolution. Philos Trans R Soc Lond Ser B Biol Sci 370(1684):20150181

    Article  Google Scholar 

  5. King N, Rokas A (2017) Embracing uncertainty in reconstructing early animal evolution. Curr Biol 27(19):R1081–R1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burkhardt P, Jekely G (2021) Evolution of synapses and neurotransmitter systems: the divide-and-conquer model for early neural cell-type evolution. Curr Opin Neurobiol 71:127–138

    Article  CAS  PubMed  Google Scholar 

  7. Burkhardt P (2022) Ctenophores and the evolutionary origin(s) of neurons. Trends Neurosci 45(12):878–880

    Article  CAS  PubMed  Google Scholar 

  8. Burkhardt P et al (2023) Syncytial nerve net in a ctenophore adds insights on the evolution of nervous systems. Science 380(6642):293–297

    Article  CAS  PubMed  Google Scholar 

  9. Schultz DT et al (2023) Ancient gene linkages support ctenophores as sister to other animals. Nature 618(7963):110–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Costello J et al (2012) Transitions of Mnemiopsis leidyi (Ctenophora: Lobata) from a native to an exotic species: a review. Hydrobiologia 690(1):21–46

    Article  Google Scholar 

  11. Mertens KH (1833) Beobachtungen und Untersuchungen über die beroeartigen Akalephen. University of California

    Google Scholar 

  12. Forskål P (1775) Descriptiones animalium, avium, amphibiorum, piscium, insectorum, vermium; quae in itinere orientali observavit. Ex Office Mölleri, p 164

    Book  Google Scholar 

  13. Müller O (1776) Zoologiae Danicae Prodromus, seu Animalium Daniae et Norvegiae Indigernarum characteres, nomina, et synonyma imprimis popularium. Copenhagen, Hallager for the author, p 282

    Book  Google Scholar 

  14. Fabricius O (1780) Fauna Groenlandica. I. G. Rothe, p 452

    Google Scholar 

  15. WoRMS Editorial Board, World Register of Marine Species (WoRMS). Available from http://www.marinespecies.org at VLIZ. Accessed 03 July 2020

  16. Eschscholtz JF (1829) System der Acalephen. Eine ausführliche Beschreibung aller Medusenartigen Strahlthiere… Mit 16 Kupfertafeln. F. Dümmler

    Book  Google Scholar 

  17. Agassiz A (1865) Illustrated catalogue of the museum of Comparative Zoology, at Harvard College. No. II, North American Acalephae, Cambridge

    Google Scholar 

  18. Nagabhushanam A (1959) Feeding of a ctenophore, Bolinopsis infundibulum (OF Müller). Nature 184(4689):829–829

    Article  Google Scholar 

  19. Greve W (1968) The “planktonkreisel”, a new device for culturing zooplankton. Mar Biol 1(3):201–203

    Article  Google Scholar 

  20. Greve W (1970) Cultivation experiments on North Sea ctenophores. Helgoländer Meeresun 20(1):304

    Article  Google Scholar 

  21. Ward WW (1974) Aquarium systems for the maintenance of ctenophores and jellyfish and for the hatching and harvesting of brine shrimp (Artemia salina) larvae. Chesap Sci 15(2):116–118

    Article  Google Scholar 

  22. Raskoff KA et al (2003) Collection and culture techniques for gelatinous zooplankton. Biol Bull 204(1):68–80

    Article  PubMed  Google Scholar 

  23. Knowles T (2016) The history of jelly husbandry at the Monterey Bay Aquarium. Der Zoologische Garten 85(1):42–51

    Article  Google Scholar 

  24. Hirota J (1972) Laboratory culture and metabolism of the planktonic ctenophore, Pleurobrachia bachei A. Agassiz. In: Biological oceanography of the northern North Pacific Ocean. Idemitsu Shoten, Tokyo

    Google Scholar 

  25. Baker L, Reeve M (1974) Laboratory culture of the lobate ctenophore Mnemiopsis mccradyi with notes on feeding and fecundity. Mar Biol 26(1):57–62

    Article  Google Scholar 

  26. Pang K, Martindale MQ (2008) Mnemiopsis leidyi spawning and embryo collection. Cold Spring Harbor Protocols 2008(11):pdb.prot5085

    Article  PubMed  Google Scholar 

  27. Salinas-Saavedra M, Martindale MQ (2018) Improved protocol for spawning and immunostaining embryos and juvenile stages of the ctenophore Mnemiopsis leidyi. Protoc Exch. https://doi.org/10.1038/protex.2018.092

  28. Patry WL et al (2020) Diffusion tubes: a method for the mass culture of ctenophores and other pelagic marine invertebrates. PeerJ 8:e8938

    Article  PubMed  PubMed Central  Google Scholar 

  29. Courtney A, Merces GO, Pickering M (2020) Characterising the behaviour of the ctenophore Pleurobrachia pileus in a laboratory aquaculture system. bioRxiv

    Google Scholar 

  30. Dieter AC, Vandepas LE, Browne WE (2022) Isolation and maintenance of in vitro cell cultures from the ctenophore Mnemiopsis leidyi (M. leidyi). In: Blanchoud S, Galliot B (eds) Whole-body regeneration: methods and protocols. Springer, New York, pp 347–358

    Chapter  Google Scholar 

  31. Ramon-Mateu J et al (2022) Studying ctenophora WBR using Mnemiopsis leidyi. Methods Mol Biol 2450:95–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Presnell JS et al (2022) Multigenerational laboratory culture of pelagic ctenophores and CRISPR–Cas9 genome editing in the lobate Mnemiopsis leidyi. Nat Protoc 17(8):1868–1900

    Article  CAS  PubMed  Google Scholar 

  33. Ikeda S et al (2022) An effective method to mass culture a lobate ctenophore Bolinopsis mikado. Plankton Benthos Res 17(4):343–348

    Article  Google Scholar 

  34. Sebé-Pedrós A et al (2018) Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nat Ecol Evol 2(7):1176

    Article  PubMed  PubMed Central  Google Scholar 

  35. Levin M et al (2016) The mid-developmental transition and the evolution of animal body plans. Nature 531(7596):637–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. de Mendoza A et al (2019) Convergent evolution of a vertebrate-like methylome in a marine sponge. Nat Ecol Evol 3(10):1464–1473

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pang K, Martindale MQ (2008) Ctenophore whole-mount in situ hybridization. Cold Spring Harb Protoc 2008(11):pdb.prot5087

    Article  Google Scholar 

  38. Sachkova MY et al (2021) Neuropeptide repertoire and 3D anatomy of the ctenophore nervous system. Curr Biol 31(23):5274–5285 e6

    Article  CAS  PubMed  Google Scholar 

  39. Pang K, Martindale MQ (2008) Ctenophore whole-mount antibody staining. Cold Spring Harb Protoc 2008(11):pdb.prot5086

    Article  Google Scholar 

  40. Yamada A et al (2010) Highly conserved functions of the Brachyury gene on morphogenetic movements: insight from the early-diverging phylum Ctenophora. Dev Biol 339(1):212–222

    Article  CAS  PubMed  Google Scholar 

  41. Jokura K et al (2019) CTENO64 is required for coordinated paddling of ciliary comb plate in ctenophores. Curr Biol 29(20):3510-+

    Article  CAS  PubMed  Google Scholar 

  42. Presnell JS, Browne WE (2021) Kruppel-like factor gene function in the ctenophore Mnemiopsis leidyi assessed by CRISPR/Cas9-mediated genome editing. Development 148(17):dev199771

    Article  CAS  PubMed  Google Scholar 

  43. Sutherland KR et al (2014) Ambient fluid motions influence swimming and feeding by the ctenophore Mnemiopsis leidyi. J Plankton Res 36(5):1310–1322

    Article  Google Scholar 

  44. Presnell JS et al (2016) The presence of a functionally tripartite through-gut in Ctenophora has implications for metazoan character trait evolution. Curr Biol 26(20):2814–2820

    Article  CAS  PubMed  Google Scholar 

  45. Vandepas LE et al (2017) Establishing and maintaining primary cell cultures derived from the ctenophore Mnemiopsis leidyi. J Exp Biol 220(7):1197–1201

    PubMed  Google Scholar 

  46. Tamm SL (2019) Defecation by the ctenophore Mnemiopsis leidyi occurs with an ultradian rhythm through a single transient anal pore. Invertebr Biol 138(1):3–16

    Article  Google Scholar 

  47. Shiganova T et al (2001) Population development of the invader ctenophore Mnemiopsis leidyi, in the Black Sea and in other seas of the Mediterranean basin. Mar Biol 139(3):431–445

    Article  Google Scholar 

  48. Rees J-F et al (1994) Highly unsaturated fatty acid requirements of Penaeus monodon postlarvae: an experimental approach based on Artemia enrichment. Aquaculture 122(2–3):193–207

    Article  CAS  Google Scholar 

  49. Brett M, Müller-Navarra D (1997) The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshw Biol 38(3):483–499

    Article  CAS  Google Scholar 

  50. Granhag L, Møller LF, Hansson LJ (2011) Size-specific clearance rates of the ctenophore Mnemiopsis leidyi based on in situ gut content analyses. J Plankton Res 33(7):1043–1052

    Article  Google Scholar 

  51. Freeman G, Reynolds GT (1973) The development of bioluminescence in the ctenophore Mnemiopsis leidyi. Dev Biol 31(1):61–100

    Article  CAS  PubMed  Google Scholar 

  52. Sasson DA, Ryan JF (2016) The sex lives of ctenophores: the influence of light, body size, and self-fertilization on the reproductive output of the sea walnut, Mnemiopsis leidyi. PeerJ 4:e1846

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jaspers C, Møller LF, Kiørboe T (2015) Reproduction rates under variable food conditions and starvation in Mnemiopsis leidyi: significance for the invasion success of a ctenophore. J Plankton Res 37(5):1011–1018

    Article  Google Scholar 

  54. Sasson DA, Jacquez AA, Ryan JF (2018) The ctenophore Mnemiopsis leidyi regulates egg production via conspecific communication. BMC Ecol 18(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ramondenc S et al (2019) From egg to maturity: a closed system for complete life cycle studies of the holopelagic jellyfish Pelagia noctiluca. J Plankton Res 41(3):207–217

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to express their gratitude to Miguel Candelas (L’Oceanogràfic, Spain) for his valuable recommendations on feeding regimes and Anne Aasjord, Kjerstin Nilsen Nøkling and Eilen Myrvold (Michael Sars Centre) for their accurate advice on water quality aspects. We also thank Mari Bergsvåg (Michael Sars Centre) for taking the picture of the lobed adult ctenophore in Fig. 3 and Aino Hosia and Luis Martell (University Museum of Bergen) for sharing their expertise on sampling delicate gelatinous zooplankton. This work was supported by the Michael Sars Centre core budget and the European Research Council Consolidator Grant (101044989, “ORIGINEURO”) awarded to P.B.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joan J. Soto-Angel or Pawel Burkhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Soto-Angel, J.J., Nordmann, EL., Sturm, D., Sachkova, M., Pang, K., Burkhardt, P. (2024). Stable Laboratory Culture System for the Ctenophore Mnemiopsis leidyi. In: Moroz, L.L. (eds) Ctenophores. Methods in Molecular Biology, vol 2757. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3642-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3642-8_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3641-1

  • Online ISBN: 978-1-0716-3642-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics