Skip to main content

Administering a Behavioral Test Battery in Rodents

  • Protocol
  • First Online:
Neurobiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2746))

  • 593 Accesses

Abstract

Although animal models cannot broadly represent uniquely human psychiatric or psychological syndromes such as anxiety, depression, or schizophrenia, behavioral testing in rodents can be extremely helpful to investigate specific disease aspects and symptoms. Animal behavioral test batteries allow researchers to reveal specific behavioral changes in genetically modified mice or following targeted treatments or in response to environmental interventions. Examples of types of behaviors that can be combined in a test battery include anxiety-like behavior, learning and memory, depression-relevant behavior, social interaction, and locomotor hyperactivity. Here, we describe several commonly used and relatively simple behavioral tests which can be combined in the same cohort of animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Petković A, Chaudhury D (2022) Encore: Behavioural animal models of stress, depression and mood disorders. Front Behav Neurosci 16:931964

    Article  PubMed  PubMed Central  Google Scholar 

  2. van den Buuse M, Garner B, Gogos A, Kusljic S (2005) Importance of animal models in schizophrenia research. Aust N Z J Psychiatry 39:550–557

    Article  PubMed  Google Scholar 

  3. Chadman KK, Yang M, Crawley JN (2009) Criteria for validating mouse models of psychiatric diseases. Am J Med Genet B Neuropsychiatr Genet 150b:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  4. van den Buuse M (2010) Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophr Bull 36:246–270

    Article  PubMed  Google Scholar 

  5. Wall PM, Messier C (2001) Methodological and conceptual issues in the use of the elevated plus-maze as a psychological measurement instrument of animal anxiety-like behavior. Neurosci Biobehav Rev 25:275–286

    Article  CAS  PubMed  Google Scholar 

  6. Denenberg A (2006) Open-field behavior in rats: what does it mean? Ann N Y Acad Sci 159:852–859

    Article  Google Scholar 

  7. Jaehne EJ, Kent JN, Lam N, Schonfeld L, Spiers JG, Begni V, De Rosa F, Riva MA, van den Buuse M (2023) Chronic running-wheel exercise from adolescence leads to increased anxiety and depression-like phenotypes in adulthood in rats: effects on stress markers and interaction with BDNF Val66Met genotype. Dev Psychobiol 65:e22347

    Article  CAS  PubMed  Google Scholar 

  8. Al Dahhan NZ, De Felice FG, Munoz DP (2019) Potentials and pitfalls of cross-translational models of cognitive impairment. Front Behav Neurosci 13:48

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dellu F, Contarino A, Simon H, Koob GF, Gold LH (2000) Genetic differences in response to novelty and spatial memory using a two-trial recognition task in mice. Neurobiol Learn Mem 73:31–48

    Article  CAS  PubMed  Google Scholar 

  10. Dellu F, Mayo W, Cherkaoui J, Le Moal M, Simon H (1992) A two-trial memory task with automated recording: study in young and aged rats. Brain Res 588:132–139

    Article  CAS  PubMed  Google Scholar 

  11. Dere E, Huston JP, De Souza Silva MA (2007) The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci Biobehav Rev 31:673–704

    Article  CAS  PubMed  Google Scholar 

  12. Commons KG, Cholanians AB, Babb JA, Ehlinger DG (2017) The rodent forced swim test measures stress-coping strategy, not depression-like behavior. ACS Chem Neurosci 8:955–960

    Article  CAS  PubMed  Google Scholar 

  13. Leite-Almeida H, Castelhano-Carlos MJ, Sousa N (2021) New horizons for phenotyping behavior in rodents: the example of depressive-like behavior. Front Behav Neurosci 15:811987

    Article  PubMed  Google Scholar 

  14. Kaidanovich-Beilin O, Lipina T, Vukobradovic I, Roder J, Woodgett JR (2011) Assessment of social interaction behaviors. J Visual Exp 2011:2473

    Google Scholar 

  15. Yang M, Silverman JL, Crawley JN (2011) Automated three-chambered social approach task for mice. Curr Protoc Neurosci Chapter 8: Unit 8.26

    Google Scholar 

  16. O'Tuathaigh CM, Kirby BP, Moran PM, Waddington JL (2010) Mutant mouse models: genotype-phenotype relationships to negative symptoms in schizophrenia. Schizophr Bull 36:271–288

    Article  PubMed  Google Scholar 

  17. Millan MJ, Bales KL (2013) Towards improved animal models for evaluating social cognition and its disruption in schizophrenia: the CNTRICS initiative. Neurosci Biobehav Rev 37:2166–2180

    Article  PubMed  Google Scholar 

  18. Corrone M, Ratnayake R, De Oliveira N, Jaehne EJ, van den Buuse M (2023) Methamphetamine-induced locomotor sensitization in mice is not associated with deficits in a range of cognitive, affective and social behaviours: interaction with brain-derived neurotrophic factor (BDNF) Val66Met. Behav Pharmacol 34:20–36

    Article  CAS  PubMed  Google Scholar 

  19. Genders SG, Scheller KJ, Jaehne EJ, Turner BJ, Lawrence AJ, Brunner SM, Kofler B, van den Buuse M, Djouma E (2019) GAL3 receptor knockout mice exhibit an alcohol-preferring phenotype. Addict Biol 24:886–897

    Article  CAS  PubMed  Google Scholar 

  20. Jaehne EJ, Ameti D, Paiva T, van den Buuse M (2017) Investigating the role of serotonin in methamphetamine psychosis: unaltered behavioral effects of chronic methamphetamine in 5-HT1A knockout mice. Front Psych 8:61

    Article  Google Scholar 

  21. Tran SC, Jaehne EJ, Dye LE, Wong J, Bakas JS, Gasperoni JG, Hale MW, van den Buuse M, Dworkin S, Grommen SVH, De Groef B (2021) Effect of pleomorphic adenoma gene 1 deficiency on selected behaviours in adult mice. Neuroscience 455:30–38

    Article  CAS  PubMed  Google Scholar 

  22. Lad HV, Liu L, Paya-Cano JL, Parsons MJ, Kember R, Fernandes C, Schalkwyk LC (2010) Behavioural battery testing: evaluation and behavioural outcomes in 8 inbred mouse strains. Physiol Behav 99:301–316

    Article  CAS  PubMed  Google Scholar 

  23. Jaehne EJ, Kent JN, Antolasic EJ, Wright BJ, Spiers JG, Creutzberg KC, De Rosa F, Riva MA, Sortwell CE, Collier TJ, van den Buuse M (2022) Behavioral phenotyping of a rat model of the BDNF Val66Met polymorphism reveals selective impairment of fear memory. Transl Psychiatry 12:93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kokras N, Baltas D, Theocharis F, Dalla C (2017) Kinoscope: an open-source computer program for behavioral pharmacologists. Front Behav Neurosci 11:88

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen ZY, Jing D, Bath KG, Ieraci A, Khan T, Siao CJ, Herrera DG, Toth M, Yang C, McEwen BS, Hempstead BL, Lee FS (2006) Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 314:140–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Notaras M, Hill R, Gogos JA, van den Buuse M (2016) BDNF Val66Met genotype determines hippocampus-dependent behavior via sensitivity to glucocorticoid signaling. Mol Psychiatry 21:730–732

    Article  CAS  PubMed  Google Scholar 

  27. Gururajan A, Hill RA, van den Buuse M (2015) Brain-derived neurotrophic factor heterozygous mutant rats show selective cognitive changes and vulnerability to chronic corticosterone treatment. Neuroscience 284:297–310

    Article  CAS  PubMed  Google Scholar 

  28. Manning EE, Halberstadt AL, van den Buuse M (2016) BDNF-deficient mice show reduced psychosis-related behaviors following chronic methamphetamine. Int J Neuropsychopharmacol 19:pyv116

    Article  PubMed  Google Scholar 

  29. van den Buuse M, Ruimschotel E, Martin S, Risbrough VB, Halberstadt AL (2011) Enhanced effects of amphetamine but reduced effects of the hallucinogen, 5-MeO-DMT, on locomotor activity in 5-HT1A receptor knockout mice: implications for schizophrenia. Neuropharmacology 61:209–216

    Article  PubMed  Google Scholar 

  30. Slattery DA, Cryan JF (2012) Using the rat forced swim test to assess antidepressant-like activity in rodents. Nat Prot 7:1009–1014

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten van den Buuse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jaehne, E.J., Corrone, M., van den Buuse, M. (2024). Administering a Behavioral Test Battery in Rodents. In: Dworkin, S. (eds) Neurobiology. Methods in Molecular Biology, vol 2746. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3585-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3585-8_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3584-1

  • Online ISBN: 978-1-0716-3585-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics